Antiderivatives- HW Problems

Find the following indefinite integrals

1.
$$\int (x-4)dx$$

2.
$$\int (4x^3 + 3x^2 + 1)dx$$

3.
$$\int \left(\sqrt[3]{x^2} + \frac{1}{\sqrt{x}}\right)dx$$

4.
$$\int \frac{2x^4 - \sqrt{x}}{x^3}dx$$

5.
$$\int (y+2)(y^3 - y)dy$$

6.
$$\int (t^2 + 1)^2 dt$$

7.
$$\int (2\cos(x) - 3\sin(x))dx$$

8.
$$\int (\sec^2(x) - (\csc(x))(\cot(x)))dx$$

9.
$$\int (3x^2 + \cos(3x))dx$$

10. $\int [(\sec(2x))(\tan(2x)) + \csc^2(3x))]dx$

Solve the following differential equations.

11.
$$f'(x) = 2x + 3$$
, $f(0) = 2$
12. $f'(x) = 3x^2 + \sin(x)$, $f(0) = 3$
13. $g'(t) = 3\sqrt{t} + \frac{1}{t^2}$, $g(1) = 4$

14. A ball is thrown upwards from a height of 112 feet above the ground at an initial velocity of 96 ft/sec. Assuming that it's acceleration due to gravity is $-32 ft/sec^2$

- a. Find the velocity function v(t), $t \ge 0$.
- b. Find the position function s(t), $t \ge 0$.
- c. Find the maximum height of the ball.
- d. When does the ball hit the ground?
- e. What is the velocity of the ball when it hits the ground?

15. Acceleration due to gravity on the moon is approximately $-1.6 \ m/sec^2$. A stone is dropped from a cliff on the moon and hits the surface 30 sec later. How far did it fall and what was its velocity on impact?