Rolle's Theorem: If

- 1. $f(x)$ is continuous on the closed interval [a, b]
- 2. $f(x)$ is differentiable on the open interval (a, b)
- 3. $f(a) = f(b)$

Then there is at least one number c in (a, b) such the $f'(c) = 0$.

Ex. Notice that the function $f(x) = 1 - |x|$ on $[-1, 1]$ does not satisfy Rolle's theorem since it doesn't have a derivative at every point in $(-1, 1)$ (where doesn't it have a derivative?). If we draw the graph of $f(x) = 1 - |x|$ on $[-1, 1]$ we can see that there is no point where $f'(x) = 0$.

Ex. Verify that $f(x) = x^2 - 3x + 2$ satisfies Rolle's Thm on [0,3] and find all values c that satisfy the conclusion of Rolle's Thm (ie, $f'(c) = 0$).

a. $f(x)$ is a polynomial so it is continuous everywhere. In particular, it's continuous on [0,3].

b. $f(x)$ is a polynomial so it is differentiable everywhere. In particular, it's differentiable on (0,3).

c. $f(0) = 2$, $f(3) = 3² - 3(3) + 2 = 2$. Thus $f(0) = f(3)$.

So $f(x)$ satisfies the conditions of Rolle's theorem.

$$
f'(x) = 2x - 3 = 0 \implies x = \frac{3}{2}.
$$

Thus $c=\frac{3}{3}$ $\frac{3}{2}$ is the only point in [0,3] where $f'(x) = 0$.

The Mean Value Theorem: If

- 1. $f(x)$ is continuous on the closed interval [a, b]
- 2. $f(x)$ is differentiable on the open interval (a, b)

Then there is at least one number c in (a, b) such that $f'(c) = \frac{f(b)-f(a)}{b-a}$ $\frac{b-a}{b-a}$.

Ex. Show $f(x) = x^3 - x$ satisfies the Mean Value Theorem (MVT) on [0,2] and find all c' s that satisfy the conclusion of the MVT.

a. $f(x)$ is a polynomial so it is continuous everywhere. In particular, it's continuous on [0,2].

b. $f(x)$ is a polynomial so it is differentiable everywhere. In particular, it's differentiable on (0,2).

$$
\frac{f(b)-f(a)}{b-a} = \frac{f(2)-f(0)}{2-0} = \frac{[(2^3-2)-(0^3-0)]}{2} = 3.
$$

$$
f'(x) = 3x^2 - 1 \implies f'(c) = 3c^2 - 1
$$

So $f'(c) = \frac{f(b)-f(a)}{b-a}$ when

$$
3c^2 - 1 = 3
$$

$$
3c^2 = 4
$$

$$
c^2 = \frac{4}{3} \implies c = \pm \frac{2}{\sqrt{3}}
$$

But only $c = \frac{2}{\sqrt{3}}$ is in the interval (0,2).

Ex. Show $f(x) = \sqrt{x}$ satisfies the MVT on [1,9] and find all c's that satisfy the conclusion of the MVT.

a. $f(x)$ is continuous on [1,9] because it's a root function so it's continuous in its domain $(x \geq 0)$.

b. $f(x)$ is differentiable on (1,9) because $f'(x) = \frac{1}{2\sqrt{x}}$ $\frac{1}{2\sqrt{x}}$ which exists in (1,9).

$$
\frac{f(b) - f(a)}{b - a} = \frac{\sqrt{9} - \sqrt{1}}{9 - 1} = \frac{3 - 1}{8} = \frac{1}{4}
$$

$$
f'(x) = \frac{1}{2\sqrt{x}} \implies f'(c) = \frac{1}{2\sqrt{c}}
$$

So $f'(c) = \frac{f(b) - f(a)}{b - a}$ when

$$
\frac{1}{2\sqrt{c}} = \frac{1}{4} \implies 4 = 2\sqrt{c} \implies c = 4.
$$

Ex. Suppose a runner can run 21 miles in 3 hours. Assuming that the runner's speed is 0 at the start and finish, show that the runner must have been running at precisely 5 mph at least twice in the race (assume that the runner's position and velocity are differentiable functions on (0, 21) and continuous on [0, 21]).

 Notice that the runner's average velocity is 21 3 $= 7$ mph. By the Mean Value Theorem 21 $\frac{21}{3} = \frac{s(3.0) - s(0)}{3.0 - 0}$ 3.0−0 $= s'(c)$ for $0 < c < 3.0$. So the runner must have been running at 7 mph at some point. Since the runner's velocity is 0 at the beginning and end, by the intermediate value theorem, the runner must have been running at exactly 5 mph at least twice (once on $(0, c)$ and once on $(c, 3.0)$). Theorem: If $f'(x) = 0$ for all x in (a, b) , then $f(x)$ is a constant on (a, b) .

Proof: We need to show that given any points x_1, x_2 with $a < x_1, x_2 < b$ that $f(x_1) = f(x_2)$.

Apply the Mean Value Theorem to the interval $[x_1, x_2]$:

$$
0 = f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \implies f(x_2) = f(x_1).
$$

Thus $f(x)$ is a constant on (a, b) .

Corollary: If $f'(x) = g'(x)$ for all x in an interval (a, b) , then $f(x) = g(x) + constant.$

Proof: Let $h(x) = f(x) - g(x)$, then $h'(x) = 0$ in the interval (a, b) , and thus by the previous theorem, $h(x) = f(x) - g(x)$ =constant.

Thus $f(x) = g(x) +$ constant.

Theorem: Suppose $f(x)$ is continuous on an interval I and differentiable at all interior points of *I*. If $f'(x) > 0$ at all interior points of *I*, then $f(x)$ is increasing on *I*. If $f'(x) < 0$ at all interior points of *I*, then $f(x)$ is decreasing on *I*.

Proof when $f'(x) > 0$: Let x_1, x_2 be any points in I such that $x_1 < x_2$. Applying the MVT to $[x_1, x_2]$ we get:

$$
0 < f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad \Rightarrow \quad f(x_2) > f(x_1).
$$

Thus $f(x)$ is increasing on *I*. The proof where $f'(x) < 0$ is similar.