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𝑓′(𝑐) = 0 

𝑓′(𝑑) = 0 

                                      The Mean Value Theorem 

 

Rolle’s Theorem:  If 

1.  𝑓(𝑥) is continuous on the closed interval [𝑎, 𝑏] 

2.  𝑓(𝑥) is differentiable on the open interval (𝑎, 𝑏) 

3.  𝑓(𝑎) = 𝑓(𝑏) 

Then there is at least one number 𝑐 in (𝑎, 𝑏) such the 𝑓’(𝑐) = 0. 

 

 

 

 

 

 

Ex.  Notice that the function 𝑓(𝑥) = 1 − |𝑥| on [−1, 1] does not satisfy Rolle’s 

theorem since it doesn’t have a derivative at every point in (−1, 1) (where 

doesn’t it have a derivative?).  If we draw the graph of 𝑓(𝑥) = 1 − |𝑥| on [−1, 1] 

we can see that there is no point where 𝑓′(𝑥) = 0. 

 

 

 

 

 

 

  𝑎                𝑐                                   𝑑                 𝑏 

(𝑎, 𝑓(𝑎)) 

(𝑏, 𝑓(𝑏)) 

𝑓′(𝑐) = 0 

𝑓′(𝑑) = 0 

−1                           0                              1 

𝑓(𝑥) = 1 − |𝑥| 
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(𝑎, 𝑓(𝑎)) 

Ex.  Verify that 𝑓(𝑥) = 𝑥2 − 3𝑥 + 2 satisfies Rolle’s Thm on [0,3] and find all 

values 𝑐 that satisfy the conclusion of Rolle’s Thm (ie, 𝑓’(𝑐) = 0). 

 

a.  𝑓(𝑥) is a polynomial so it is continuous everywhere.  In particular, it’s 

continuous on [0,3]. 

b.  𝑓(𝑥) is a polynomial so it is differentiable everywhere.  In particular, it’s 

differentiable on (0,3). 

c.  𝑓(0) = 2,   𝑓(3) = 32 − 3(3) + 2 = 2.  Thus 𝑓(0) = 𝑓(3). 

So 𝑓(𝑥) satisfies the conditions of Rolle’s theorem. 

 

𝑓′(𝑥) = 2𝑥 − 3 = 0    ⟹     𝑥 =
3

2
. 

Thus 𝑐 =
3

2
  is the only point in  [0,3] where 𝑓′(𝑥) = 0. 

   

The Mean Value Theorem: If 

1.  𝑓(𝑥) is continuous on the closed interval [𝑎, 𝑏] 

2.  𝑓(𝑥) is differentiable on the open interval (𝑎, 𝑏)  

Then there is at least one number 𝑐 in (𝑎, 𝑏) such that  𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 . 

 

 

                                                                                         Slope of secant line=
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

                                                                                         Slope of tangent line= 𝑓′(𝑐). 

 

        𝑎                             𝑐                              𝑏 

(𝑎, 𝑓(𝑎)) 

(𝑏, 𝑓(𝑏)) 

(𝑐, 𝑓(𝑐)) 
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Ex.  Show 𝑓(𝑥) = 𝑥3 − 𝑥 satisfies the Mean Value Theorem (MVT) on [0,2] and 

find all 𝑐’s that satisfy the conclusion of the MVT. 

 

a.  𝑓(𝑥) is a polynomial so it is continuous everywhere.  In particular, it’s 

continuous on [0,2]. 

b.  𝑓(𝑥) is a polynomial so it is differentiable everywhere.  In particular, it’s 

differentiable on (0,2). 

 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
=  

𝑓(2)−𝑓(0)

2−0
=

[(23−2)−(03−0)]

2
= 3. 

𝑓′(𝑥) = 3𝑥2 − 1   ⟹     𝑓′(𝑐) = 3𝑐2 − 1  

So     𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
  when  

    3𝑐2 − 1 = 3  

            3𝑐2 = 4  

              𝑐2 =
4

3
    ⟹ 𝑐 = ±

2

√3 
 

But only 𝑐 =
2

√3 
 is in the interval (0,2). 
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Ex.  Show 𝑓(𝑥) = √𝑥 satisfies the MVT on [1,9] and find all c’s that satisfy the 

conclusion of the MVT.  

 

a.  𝑓(𝑥) is continuous on [1,9]  because it’s a root function so it’s continuous in its 

domain (𝑥 ≥ 0). 

b.  𝑓(𝑥) is differentiable on (1,9) because 𝑓′(𝑥) =
1

2√𝑥
  which exists in (1,9). 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
=

√9 − √1

9 − 1
=

3 − 1

8
=

1

4
 

𝑓′(𝑥) =
1

2√𝑥
    ⟹     𝑓′(𝑐) =

1

2√𝑐
       

So  𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
  when     

1

2√𝑐
=

1

4
   ⟹   4 = 2√𝑐     ⟹ 𝑐 = 4. 

 

Ex.  Suppose a runner can run 21 miles in 3 hours.  Assuming that the runner’s 

speed is 0 at the start and finish,  show that the runner must have been running 

at precisely 5 mph at least twice in the race (assume that the runner’s position 

and velocity are differentiable functions on (0, 21) and continuous on [0, 21]).  

 

      Notice that the runner’s average velocity is 
21

3
= 7 𝑚𝑝ℎ.  By the Mean Value 

Theorem  
21

3
=

𝑠(3.0)−𝑠(0)

3.0−0
= 𝑠′(𝑐)  for 0 < 𝑐 < 3.0.  So the runner must 

have been running at 7 mph at some point.  Since the runner’s velocity is 0 at the 

beginning and end, by the intermediate value theorem, the runner must have 

been running at exactly 5 mph at least twice (once on (0, 𝑐) and once on (𝑐, 3.0)). 
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Theorem:  If 𝑓’(𝑥) = 0 for all 𝑥 in (𝑎, 𝑏), then 𝑓(𝑥) is a constant on (𝑎, 𝑏).   

 

Proof:  We need to show that given any points 𝑥1, 𝑥2 with 𝑎 < 𝑥1, 𝑥2 < 𝑏 that 

𝑓(𝑥1) = 𝑓(𝑥2). 

Apply the Mean Value Theorem to the interval [𝑥1, 𝑥2]: 

           0 = 𝑓′(𝑐) = 
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
     ⟹    𝑓(𝑥2) = 𝑓(𝑥1). 

Thus 𝑓(𝑥) is a constant on (𝑎, 𝑏). 

 

Corollary: If 𝑓’(𝑥) = 𝑔’(𝑥) for all 𝑥 in an interval (𝑎, 𝑏), then                             

                  𝑓(𝑥) = 𝑔(𝑥) +constant.  

 

Proof:  Let ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥),  then ℎ′(𝑥) = 0 in the interval (𝑎, 𝑏), and 

thus by the previous theorem,   ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) =constant. 

Thus 𝑓(𝑥) = 𝑔(𝑥) +constant. 

 

Theorem:  Suppose 𝑓(𝑥) is continuous on an interval 𝐼 and differentiable at all 

interior points of 𝐼.  If 𝑓′(𝑥) > 0 at all interior points of 𝐼, then 𝑓(𝑥) is increasing 

on 𝐼.  If 𝑓′(𝑥) < 0 at all interior points of 𝐼, then 𝑓(𝑥) is decreasing on 𝐼.   

 

Proof when 𝑓′(𝑥) > 0:  Let 𝑥1, 𝑥2 be any points in 𝐼 such that 𝑥1 < 𝑥2.          

Applying the MVT to [𝑥1, 𝑥2] we get: 

                 0 < 𝑓′(𝑐) = 
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
    ⟹    𝑓(𝑥2) > 𝑓(𝑥1).   

Thus 𝑓(𝑥) is increasing on 𝐼. The proof where 𝑓′(𝑥) < 0 is similar. 


