The Mean Value Theorem- HW Problems

Determine if Rolle's theorem applies to f(x) on the given interval. If it does, find all values c that satisfy the conclusion of Rolle's theorem. If it doesn't satisfy Rolle's theorem, explain why it doesn't.

- 1. $f(x) = x^2 4x$ on [0,4]
- 2. $f(x) = \sqrt{x} \frac{1}{2}x$ on [0,4]
- 3. $f(x) = x^{\frac{2}{3}} 3$ on [-8.8]
- 4. $f(x) = \cos(x)$ on $[0,2\pi]$
- 5. $f(x) = \tan(x)$ on $[0, \pi]$

Determine if the mean value theorem applies to f(x) in the given interval. If it does, find all values c that satisfy the conclusion of the mean value theorem. If it doesn't satisfy the MVT, explain why it doesn't.

- 6. $f(x) = 2x^3 6x + 2$ on [0,2] 7. f(x) = |x| on [-2,3] 8. $f(x) = x^{\frac{2}{3}}$ on [0,8] 9. $f(x) = 2x^{\frac{2}{3}}$ on [0,8]
- 9. f(x) = 2sin(x) + sin(2x) on $[0, \pi]$

10. Show that the equation $x^3 - 27x + K = 0$ has at most one root in [-2,2] (a root is a point c such that $c^3 - 27c + K = 0$). Hint: suppose $f(x) = x^3 - 27x + K$ has two roots in [-2,2], c_1 and c_2 . Now apply Rolle's theorem to $[c_1, c_2]$.