The Weierstrass Theorem- HW Problems

1. Let $\epsilon > 0$ be given.

a. Let $p(x)$ be a polynomial on [0,1]. Prove that there exists a polynomial, $q(x)$, with rational coefficients such that sup $0 \leq x \leq 1$ $|p(x) - q(x)| < \epsilon.$

b. Use part a to show if $f \in C[0,1]$, there exists a polynomial with rational coefficients, $q(x)$, such that sup $0 \leq x \leq 1$ $|f(x) - q(x)| < \epsilon.$

2. Let $f(x)$ be a continuous real-valued function on [0,3]. Given any $\epsilon > 0$ prove there exists a polynomial, $p(x)$, such that $\int_0^3 |f(x) - p(x)| dx < \epsilon$ $\int_{0}^{0} |f(x) - p(x)| dx < \epsilon.$

3. Prove there exists a sequence of polynomials, $p_n(x)$, such that $p_n(x)$ converges pointwise to the zero function on [0,1] and lim $\lim_{n\to\infty}\int_0^1 p_n(x)dx=4$ $\int_0^1 p_n(x) dx = 4$.

Hint: First find a sequence of continuous function $f_n(x)$ on [0,1] such that $f_n(x)$ converges pointwise to the zero function on [0,1] and lim $\lim_{n\to\infty}\int_0^1 f_n(x)dx=4$ $\int_0^1 f_n(x) dx = 4$.

4. Let $f(x) = |x - \frac{1}{2}|$ $\frac{1}{2}$ | on [0,1]. Find the Bernstein polynomials $B_2(f)$ and $B_4(f)$.

5. The Maclauring series for $f(t) = \sqrt{1-t}$ is given by

$$
\sqrt{1-t} = 1 - \frac{1}{2}t - \frac{1}{2\cdot 4}t^2 - \frac{1\cdot 3}{2\cdot 4\cdot 6}t^3 + \dots + \frac{(-1)^n\left(\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\dots\left(\frac{1}{2}-(n-1)\right)\right)}{n!}t^n + \dots
$$

which converges for $0 \le t \le 1$. Substitute $t = 1 - x^2$ to get a power series in $1-x^2$ for $\sqrt{1-(1-x^2)}=|x|$. For what values of x does the series converge? Approximate $|x|$ on $[-1,1]$ using the first 3 terms of this power series.

6. Prove there is a sequence of polynomial, $p_n(x)$, such that $p_n(x)$ converges uniformly to $|x|$ on $[-1,1]$ and $p_n(0) = 0$ for all n .

7. Prove that there does not exist a sequence of polynomials on $[0,\infty)$ that converges uniformly to $f(x) = \sin x$. However, show that for any $K > 0$ there does exist a sequence of polynomials that converges uniformly to $f(x) = \sin x$ on [0, K]. Is this last statement still true for $(0,K)$? Explain your answer.

8. Let $f(x) = e^{-x}$ on $x > 0$. Show that there does not exist a sequence of polynomials, $\{p_n\}$, on $x > 0$ that converges uniformly to $f(x) = e^{-x}$.