The Inverse Function Theorem and the Implicit Function Theorem

In first year calculus, we learn that if $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable and $f'(a) \neq 0$, then there is an open interval, V, containing a such that $f'(x) > 0$ or $f'(x) < 0$ for all $x \in V$. If $f'(x) > 0$, then f is strictly increasing on V . If $f'(x) < 0$, then f is strictly decreasing on V . Therefore, f is 1-1 on V and has an inverse function on $f(V) = W$. In addition, if $y \in W$ then,

$$
(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.
$$

We would like to develop a similar theorem for $f \colon \mathbb{R}^n \to \mathbb{R}^n.$

Inverse Function Theorem: Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable in an open set containing a and $\det(Df(a)) \neq 0$, then there is an open set, V, containing a and an open set, W , containing $f(a)$ such that $f\colon V\to W$ has a continuous inverse, $f^{-1}\colon W\to V$, which is differentiable for $y \in W$ and satisfies:

$$
(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.
$$

Ex. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ by $F(s,t) = (s^2 - t^2, 2st)$. Show that there exists an open set, V , containing $(2, 3)$ and an open set, W , containing $F(2, 3) = (-5, 12)$ such that F has a continuously differentiable inverse F^{-1} : $W\rightarrow V$. Find $DF^{-1}(-5,12)$ and show F does not have an inverse globally.

$$
DF(s,t) = \begin{pmatrix} 2s & -2t \\ 2t & 2s \end{pmatrix}
$$

so $F(s, t)$ is continuously differentiable everywhere since all of the partial derivatives are continuous everywhere.

$$
DF(2,3) = {4 \choose 6} -6
$$

det $(DF(2,3)) = 16 + 36 = 52 \neq 0$

So by the inverse function theorem, there exist open sets, V and W , containing $(2,3)$ and $(-5,12)$ such that F^{-1} : $W\rightarrow V$ and F^{-1} is continuously differentiable.

$$
DF^{-1}(-5, 12) = [DF(2, 3)]^{-1}
$$

$$
DF^{-1}(-5, 12) = \frac{1}{52} \begin{pmatrix} 4 & 6\\ -6 & 4 \end{pmatrix}
$$

$$
DF^{-1}(-5, 12) = \frac{1}{26} \begin{pmatrix} 2 & 3\\ -3 & 2 \end{pmatrix}
$$

For F to have a global inverse, it would need to be 1-1 on all of $\mathbb{R}^2.$ But $F(-1, -1) = (0, 2)$ and $F(1, 1) = (0, 2)$, so F is not globally 1-1 and hence has no global inverse.

The inverse function theorem only guarantees a local inverse. In fact, f can have a local inverse at every point and not have a global inverse.

Implicit Functions

Not all relations, even in two variables, $f(x, y) = 0$, can be written $y = f(x)$. Sometimes functions are defined implicitly. For example: $x^3 + xy^5 + y^3 = 0$ implicitly defines a function, y , in terms of x .

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^2 + y^2 - 1$.

Notice if we choose any point (a, b) with $f(a, b) = 0, a \neq \pm 1$, there are open intervals, A, containing a and B containing b such that if $x \in A$, there is a unique $y \in B$ with $f(x, y) = 0$. We can define a function $g: A \to \mathbb{R}$ by $g(x) \in B$ and $f(x, g(x)) = 0$, ie, we have $y = g(x)$.

Here, if $b>0$, then $g(x)=\sqrt{1-x^2}$ and if $b< 0$, then $g(x) = -\sqrt{1-x^2}.$ Notice that $g(x)$ is differentiable, but that when $a=\pm 1$ we can't find an interval A about a where $y = g(x)$.

More generally we ask if $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ and $f(a_1, ..., a_n, b) = 0$ when can we find, for each $(x_1,...,x_n)$ near $(a_1,...,a_n$), a unique y near b , such that $f(x_1, x_2, ..., x_n, y) = 0$ (i.e. y is implicitly a function of $(x_1, ..., x_n)$ and $y = g(x_1, ..., x_n)$ on A).

In fact, we can make this still more general and ask if :

$$
f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m
$$
 by:

$$
f(x_1, ..., x_n, y_1, ..., y_m)
$$

$$
= (f_1(x_1, ..., x_n, y_1, ..., y_m), ..., f_m(x_1, ..., x_n, y_1, ..., y_m))
$$

with
$$
f_i(a_1, ..., a_n, b_1, ..., b_m) = 0
$$
; $i = 1, ..., m$,

when can we find, for each $(x_1,...,x_n)$ near $(a_1,...,a_n$) a unique $(y_1, ..., y_m)$ near $(b_1, ..., b_m)$ which satisfies $f_i(x_1, ..., x_n, y_1, ..., y_m) = 0$?

In other words, if we have:

$$
f_1(x_1, ..., x_n, y_1, ..., y_m) = 0
$$

\n
$$
f_2(x_1, ..., x_n, y_1, ..., y_m) = 0
$$

\n:
\n
$$
f_m(x_1, ..., x_n, y_1, ..., y_m) = 0
$$

When can we "solve" for:

$$
y_1 = g_1(x_1, ..., x_n)
$$

\n
$$
y_2 = g_2(x_1, ..., x_n)
$$

\n
$$
\vdots
$$

\n
$$
y_m = g_m(x_1, ..., x_n).
$$

Implicit Function Theorem: Suppose $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ is continuously differentiable in an open set containing (a, b) and $f(a, b) = 0$ $(a \in \mathbb{R}^n, b \in \mathbb{R}^m)$. Let M be the $m \times m$ matrix:

$$
M = \left(D_{n+j}f_i(a,b)\right) \quad 1 \le i,j \le m.
$$

That is:
$$
Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \cdots \frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial x_{(n+1)}} \cdots \frac{\partial f_1}{\partial x_{(n+m)}}\\ \vdots & \vdots & \vdots & \vdots\\ \frac{\partial f_m}{\partial x_1} \cdots \frac{\partial f_m}{\partial x_n} & \frac{\partial f_m}{\partial x_{(n+1)}} \cdots \frac{\partial f_m}{\partial x_{(n+m)}} \end{bmatrix}
$$
and
$$
M = \begin{bmatrix} \frac{\partial f_1}{\partial x_{(n+1)}} \cdots \frac{\partial f_1}{\partial x_{(n+m)}}\\ \vdots & \vdots\\ \frac{\partial f_m}{\partial x_{(m+m)}} \cdots \frac{\partial f_m}{\partial x_{(m+m)}} \end{bmatrix}.
$$

 \lfloor

 $\partial x_{(n+1)}$

If $\det M \neq 0$, then there is an open set, $A \subseteq \mathbb{R}^n$, containing a and an open set, $B \subseteq \mathbb{R}^m$, containing b where for each $x \in A$ there is a unique $g(x) \in B$, such that $f(x, g(x)) = 0$, and $g(x)$ is differentiable.

 $\partial x_{(n+m)}$

Notice that the implicit function theorem says that if we have a function, $F(x, y, z) = 0$, and $\frac{\partial F}{\partial z}(x_0, y_0, z_0) \neq 0$, then locally around (x_0, y_0, z_0) the graph of $F(x, y, z) = 0$ looks like $z = g(x, y)$, where g has a differentiable inverse. Thus if $F(x,y,z) = 0$ has the property that $\frac{\partial F}{\partial z}(x_0,y_0,z_0) \neq 0$ for any point where $F(x, y, z) = 0$, then $F(x, y, z) = 0$ is a differentiable surface. Similar statements can be made about higher dimensional objects (called

manifolds). Thus, the implicit function theorem is important in differential geometry.

Ex. Let $f: \mathbb{R}^3 \times \mathbb{R}^2 \to \mathbb{R}^2$ (ie, $n = 3, m = 2$) where $f(x_1, x_2, x_3, y_1, y_2) = (2e^{y_1} + x_1y_2 - 4x_2 + 3, y_2 \cos(y_1) - 6y_1 + 2x_1 - x_3).$ So $a = (3,2,7)$ and $b = (0,1)$ and $f(3,2,7,0,1) = (0,0)$.

$$
M = \begin{bmatrix} \frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\ \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \end{bmatrix} = \begin{bmatrix} 2e^{y_1} & x_1 \\ -y_2 \sin y_1 - 6 & \cos y_1 \end{bmatrix}
$$

At (3,2,7,0,1) we have:

$$
M = \begin{bmatrix} 2 & 3 \\ -6 & 1 \end{bmatrix}
$$
 and $det M = 20 \neq 0$.

Thus by the implicit function theorem there exists a neighborhood $A\subseteq \mathbb{R}^3$ and $B \subseteq \mathbb{R}^2$ such that:

$$
y_1 = g_1(x_1, x_2, x_3)
$$

$$
y_2 = g_2(x_1, x_2, x_3).
$$