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 The Inverse Function Theorem and the Implicit Function Theorem 
 

 
In first year calculus, we learn that if 𝑓:ℝ → ℝ is continuously 

differentiable and 𝑓′(𝑎) ≠ 0, then there is an open interval, 𝑉, containing 𝑎 
such that 𝑓′(𝑥) > 0 or 𝑓′(𝑥) < 0 for all 𝑥 ∈ 𝑉.  
If 𝑓′(𝑥) > 0, then 𝑓 is strictly increasing on 𝑉. If 𝑓′(𝑥) < 0, then 𝑓 is strictly 

decreasing on 𝑉. Therefore, 𝑓 is 1-1 on 𝑉 and has an inverse function on 
𝑓(𝑉) = 𝑊. In addition, if 𝑦 ∈ 𝑊 then, 
 

(𝑓−1)′(𝑦) =
1

𝑓′(𝑓−1(𝑦))
 . 

 
We would like to develop a similar theorem for 𝑓: ℝ𝑛 → ℝ𝑛. 
 
 
Inverse Function Theorem: Suppose that 𝑓:ℝ𝑛 → ℝ𝑛 is continuously 

differentiable in an open set containing 𝑎 and det(𝐷𝑓(𝑎)) ≠ 0, then there is 

an open set, 𝑉, containing 𝑎 and an open set, 𝑊, containing 𝑓(𝑎) such that 
𝑓: 𝑉 → 𝑊 has a continuous inverse, 𝑓−1:𝑊 → 𝑉, which is differentiable for 
𝑦 ∈ 𝑊 and satisfies: 
 

(𝑓−1)′(𝑦) = [𝑓′(𝑓−1(𝑦))]
−1

. 

 
 
 
 
 
 
 
 
 

𝑎 
𝑉 

𝑓(𝑎) 

𝑊 

𝑓 

𝑓−1 
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Ex.  Let 𝐹:ℝ2 → ℝ2 by 𝐹(𝑠, 𝑡) = (𝑠2 − 𝑡2, 2𝑠𝑡). Show that there exists 

 an open set, 𝑉, containing (2, 3) and an open set, 𝑊, containing 
 𝐹(2, 3) = (−5, 12) such that 𝐹 has a continuously differentiable 

 inverse 𝐹−1:𝑊 → 𝑉. Find 𝐷𝐹−1(−5, 12) and show 𝐹 does not have an 

            inverse globally. 
 
 
 

𝐷𝐹(𝑠, 𝑡) = (
2𝑠 −2𝑡
2𝑡 2𝑠

) 
 

 so 𝐹(𝑠, 𝑡) is continuously differentiable everywhere since all of the partial 
derivatives are continuous everywhere. 
 

𝐷𝐹(2, 3) = (
4 −6
6 4

) 
 

det(𝐷𝐹(2, 3)) = 16 + 36 = 52 ≠ 0 
 
 

So by the inverse function theorem, there exist open sets, 𝑉 and 𝑊, 
containing (2, 3) and (−5, 12) such that 𝐹−1:𝑊 → 𝑉 and 𝐹−1 is 
continuously differentiable. 
 

𝐷𝐹−1(−5, 12) = [𝐷𝐹(2, 3)]−1 
 

𝐷𝐹−1(−5, 12) =
1

52
(

4 6
−6 4

) 
 

𝐷𝐹−1(−5, 12) =
1

26
(

2 3
−3 2

) 

 
For 𝐹 to have a global inverse, it would need to be 1-1 on all of ℝ2. But 

𝐹(−1,−1) = (0, 2) and 𝐹(1, 1) = (0, 2), so 𝐹 is not globally 1-1 and hence 

has no global inverse. 
 

The inverse function theorem only guarantees a local inverse. In fact, 𝑓 can have 

a local inverse at every point and not have a global inverse. 
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Implicit Functions 
 
 
 

Not all relations, even in two variables, 𝑓(𝑥, 𝑦) = 0, can be written     
 𝑦 = 𝑓(𝑥). Sometimes functions are defined implicitly. For example:               

𝑥3 + 𝑥𝑦5 + 𝑦3 = 0 implicitly defines a function, 𝑦, in terms of 𝑥. 
 
Consider 𝑓:ℝ2 → ℝ by 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1.  
 

Now let’s consider all points (𝑥, 𝑦) with 𝑓(𝑥, 𝑦) = 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice if we choose any point (𝑎, 𝑏) with 𝑓(𝑎, 𝑏) = 0, 𝑎 ≠ ±1, there are 

open intervals, 𝐴, containing 𝑎 and 𝐵 containing 𝑏 such that if 𝑥 ∈ 𝐴, there is a 

unique 𝑦 ∈ 𝐵 with 𝑓(𝑥, 𝑦) = 0. We can define a function 𝑔: 𝐴 → ℝ by     

𝑔(𝑥) ∈ 𝐵 and 𝑓(𝑥, 𝑔(𝑥)) = 0, ie, we have 𝑦 = 𝑔(𝑥). 

 

Here, if 𝑏 > 0, then 𝑔(𝑥) = √1 − 𝑥2 and if 𝑏 < 0, then 

 𝑔(𝑥) = −√1 − 𝑥2. Notice that 𝑔(𝑥) is differentiable, but that when 𝑎 = ±1 
we can’t find an interval 𝐴 about 𝑎 where 𝑦 = 𝑔(𝑥). 

(𝑎, 𝑏) 

𝑎 

𝑏 

𝐴 

𝐵 

𝑥2 + 𝑦2 − 1 = 0 



4 
 

More generally we ask if 𝑓:ℝ𝑛 ×  ℝ → ℝ and 𝑓(𝑎1, … , 𝑎𝑛, 𝑏) = 0 
when can we find, for each (𝑥1, … , 𝑥𝑛) near (𝑎1, … , 𝑎𝑛 ), a unique 𝑦 near 𝑏, 
such that 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦) = 0 (i.e. 𝑦 is implicitly a function of (𝑥1, … , 𝑥𝑛) 
and 𝑦 = 𝑔(𝑥1, … , 𝑥𝑛) on 𝐴). 

 
 
In fact, we can make this still more general and ask if : 

𝑓: ℝ𝑛 × ℝ𝑚 → ℝ𝑚 by: 
 

𝑓(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚)
= (𝑓1(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚), … , 𝑓𝑚(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚)) 

 
   with 𝑓𝑖(𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑚) = 0  ;   𝑖 = 1, … ,𝑚 , 
 
when can we find, for each (𝑥1, … , 𝑥𝑛) near (𝑎1, … , 𝑎𝑛 ) a unique 
(𝑦1, … , 𝑦𝑚) near (𝑏1, … , 𝑏𝑚 ) which satisfies 𝑓𝑖(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚) = 0?  
 
 
 

In other words, if we have: 
 

𝑓1(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚) = 0 
𝑓2(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚) = 0 
⋮ 
𝑓𝑚(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚) = 0 

 
When can we “solve” for: 

𝑦1 = 𝑔1(𝑥1, … , 𝑥𝑛) 
𝑦2 = 𝑔2(𝑥1, … , 𝑥𝑛) 
⋮ 

  𝑦𝑚 = 𝑔𝑚(𝑥1, … , 𝑥𝑛). 
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Implicit Function Theorem:  Suppose 𝑓:ℝ𝑛 × ℝ𝑚 → ℝ𝑚 is continuously 

differentiable in an open set containing (𝑎, 𝑏) and 𝑓(𝑎, 𝑏) = 0                      
(𝑎 ∈ ℝ𝑛,   𝑏 ∈ ℝ𝑚). Let 𝑀 be the 𝑚 ×  𝑚 matrix: 
 

                              𝑀 = (𝐷𝑛+𝑗𝑓𝑖(𝑎, 𝑏))         1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

 

That is:          𝐷𝑓(𝑥) =

[
 
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

𝜕𝑓1

𝜕𝑥(𝑛+1)
⋯

𝜕𝑓1

𝜕𝑥(𝑛+𝑚)

⋮ ⋮ ⋮                 ⋮
𝜕𝑓𝑚

𝜕𝑥1
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛

𝜕𝑓𝑚

𝜕𝑥(𝑛+1)
⋯

𝜕𝑓𝑚

𝜕𝑥(𝑛+𝑚)]
 
 
 
 

 

 

and                        𝑀 =

[
 
 
 
 

𝜕𝑓1

𝜕𝑥(𝑛+1)
⋯

𝜕𝑓1

𝜕𝑥(𝑛+𝑚)

⋮ ⋮
𝜕𝑓𝑚

𝜕𝑥(𝑛+1)
⋯

𝜕𝑓𝑚

𝜕𝑥(𝑛+𝑚)]
 
 
 
 

 . 

                                                                       
 
If det𝑀 ≠ 0, then there is an open set, 𝐴 ⊆ ℝ𝑛, containing 𝑎 and an open set, 
𝐵 ⊆ ℝ𝑚, containing 𝑏 where for each 𝑥 ∈ 𝐴 there is a unique 𝑔(𝑥) ∈ 𝐵, such 

that 𝑓(𝑥, 𝑔(𝑥)) = 0, and 𝑔(𝑥) is differentiable.  

 
 

Notice that the implicit function theorem says that if we have a function, 

𝐹(𝑥, 𝑦, 𝑧) = 0, and 
𝜕𝐹

𝜕𝑧
(𝑥0, 𝑦0, 𝑧0) ≠ 0, then locally around(𝑥0, 𝑦0, 𝑧0) the 

graph of 𝐹(𝑥, 𝑦, 𝑧) = 0 looks like 𝑧 = 𝑔(𝑥, 𝑦), where 𝑔 has a differentiable 

inverse. Thus if 𝐹(𝑥, 𝑦, 𝑧) = 0 has the property that 
𝜕𝐹

𝜕𝑧
(𝑥0, 𝑦0, 𝑧0) ≠ 0 for 

any point where 𝐹(𝑥, 𝑦, 𝑧) = 0, then 𝐹(𝑥, 𝑦, 𝑧) = 0 is a differentiable surface.  

 

Similar statements can be made about higher dimensional objects (called 
manifolds). Thus, the implicit function theorem is important in differential 
geometry. 
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Ex.  Let 𝑓:ℝ3 × ℝ2 → ℝ2   (ie, 𝑛 = 3, 𝑚 = 2)   where  
 
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2) = (2𝑒𝑦1 + 𝑥1𝑦2 − 4𝑥2 + 3, 𝑦2 cos(𝑦1) − 6𝑦1 + 2𝑥1 − 𝑥3). 
 

So 𝑎 = (3,2,7)  and 𝑏 = (0,1) and 𝑓(3,2,7,0,1) = (0,0). 
 

𝑀 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑦1

𝜕𝑓1
𝜕𝑦2

𝜕𝑓2
𝜕𝑦1

𝜕𝑓2
𝜕𝑦2]

 
 
 
 

= [
2𝑒𝑦1 𝑥1

−𝑦2𝑠𝑖𝑛𝑦1 − 6 𝑐𝑜𝑠𝑦1
] 

 
At (3,2,7,0,1) we have: 
 

                          𝑀 = [
2 3

−6 1
]     and  det𝑀 = 20 ≠ 0. 

 
Thus by the implicit function theorem there exists a neighborhood 𝐴 ⊆ ℝ3 and 
𝐵 ⊆ ℝ2  such that: 
                          
                            𝑦1 = 𝑔1(𝑥1, 𝑥2, 𝑥3) 
                            𝑦2 = 𝑔2(𝑥1, 𝑥2, 𝑥3). 


