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                Uniform Convergence of Series: The Weierstrass M-Test 

 

Def.  ∑ 𝑴𝒊 = 𝑴∞
𝒊=𝟏  ; where 𝑀𝑖, 𝑀 ∈ ℝ, means given: 

𝑆1 = 𝑀1  

𝑆2 = 𝑀1 + 𝑀2  

𝑆3 = 𝑀1 + 𝑀2 + 𝑀3  

⋮  

𝑆𝑛 = 𝑀1 + 𝑀2 + 𝑀3 + ⋯ + 𝑀𝑛  

then 𝑀 = lim
𝑛→∞

𝑆𝑛. 

 

Def.  𝑺(𝒙) = ∑ 𝒇𝒊(𝒙)∞
𝒊=𝟏  if given 𝑆𝑛(𝑥) = ∑ 𝑓𝑖(𝑥)𝑛

𝑖=1 ,  

𝑆1(𝑥) = 𝑓1(𝑥)  

𝑆2(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥)  

𝑆3(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥)  

⋮  

𝑆𝑛(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + ⋯ + 𝑓𝑛(𝑥)   

then lim
𝑛→∞

𝑆𝑛(𝑥) = 𝑆(𝑥)  where this limit means pointwise convergence. 

 

 

Ex. Let 𝑓𝑖(𝑥) =
𝑥𝑖−1

(𝑖−1)!
 ;  then   

𝑆𝑛(𝑥) = ∑ 𝑓𝑖(𝑥)𝑛
𝑖=1 = 1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛−1

(𝑛−1)!
    

𝑆(𝑥) = lim
𝑛→∞

𝑆𝑛(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛−1

(𝑛−1)!
+ ⋯ = 𝑒𝑥 .   
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Def.  We say ∑ 𝒇𝒊(𝒙)∞
𝒊=𝟏  converges uniformly to 𝑺(𝒙) if the sequence of 

functions 𝑆𝑛(𝑥) converges uniformly to 𝑆(𝑥). 

 

Theorem (Weierstrass 𝑀 Test): Let {𝑓𝑛(𝑥)} be a sequence of functions on 𝐼.  

Suppose that each 𝑓𝑛(𝑥) is bounded on 𝐼, i.e. there exists real numbers 𝑀𝑛 such 

that |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝐼.  If ∑ 𝑀𝑛
∞
𝑛=1  converges then ∑ 𝑓𝑛(𝑥)∞

𝑛=1  

converges uniformly on 𝐼. 

 

Proof:  We know that 𝑆𝑛(𝑥) = ∑ 𝑓𝑖(𝑥)𝑛
𝑖=1  converges uniformly to 𝑆(𝑥) if and 

only if for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛, 𝑚 ≥ 𝑁  

then |𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| < 𝜖  (by the theorem we proved in the last section).  

 

Assuming 𝑚 > 𝑛: 

𝑆𝑚(𝑥) − 𝑆𝑛(𝑥) = ∑ 𝑓𝑖(𝑥)𝑚
𝑖=1 − ∑ 𝑓𝑖(𝑥) = ∑ 𝑓𝑖(𝑥)𝑚

𝑖=𝑛+1
𝑛
𝑖=1 .  

   

So we need to force  |𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| = |∑ 𝑓𝑖(𝑥)𝑚
𝑖=𝑛+1 | < 𝜖.  

 

So if we can find a 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛, 𝑚 ≥ 𝑁 then 

 |∑ 𝑓𝑖(𝑥)𝑚
𝑖=𝑛+1 | < 𝜖  we will have proved  ∑ 𝑓𝑛(𝑥)∞

𝑛=1  converges uniformly on 𝐼. 

 

Since ∑ 𝑀𝑛
∞
𝑛=1  converges we know given any 𝜖 > 0 there exists an 𝑁′ ∈ ℤ+ such 

that 𝑚, 𝑛 ≥ 𝑁′ implies that                                                                                           

                         | ∑ 𝑀𝑖| = 𝑀𝑛+1 + 𝑀𝑛+2 + ⋯ + 𝑀𝑚 < 𝜖𝑚
𝑖=𝑛+1 .  

 

Let 𝑁 = 𝑁′.  Then we have by the triangle inequality: 

|𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| = |∑ 𝑓𝑖(𝑥)𝑚
𝑖=𝑛+1 | < |𝑓𝑛+1(𝑥)| + |𝑓𝑛+2(𝑥)| + ⋯ |𝑓𝑚(𝑥)|   

                                                                    ≤ 𝑀𝑛+1 + 𝑀𝑛+2 + ⋯ + 𝑀𝑚 < 𝜖.                
So ∑ 𝑓𝑛(𝑥)∞

𝑛=1  converges uniformly on 𝐼. 
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Ex.  Prove ∑
𝑥𝑛

𝑛!
∞
𝑛=0   converges uniformly to 𝑓(𝑥) = 𝑒𝑥 on the interval [−𝑘, 𝑘].  

 

Notice that if we let 𝑓𝑛(𝑥) =
𝑥𝑛

𝑛!
 ,  then we have: 

 |𝑓𝑛(𝑥)| = |
𝑥𝑛

𝑛!
| ≤

𝑘𝑛

𝑛!
= 𝑀𝑛   for all 𝑥 ∈ [−𝑘, 𝑘].   

∑
𝑘𝑛

𝑛!
∞
𝑛=0   converges by the ratio test since:    

lim
𝑛→∞

|
𝑀𝑛+1

𝑀𝑛
| = lim

𝑛→∞
|

(𝑘)𝑛+1

(𝑛+1)!

𝑘𝑛

𝑛!

| = lim
𝑛→∞

𝑘

𝑛+1
= 0 < 1.    

So by the Weierstrass 𝑀 Test  ∑
𝑥𝑛

𝑛!
∞
𝑛=0   converges uniformly on the interval 

[−𝑘, 𝑘].  We know from Taylor series that ∑
𝑥𝑛

𝑛!
∞
𝑛=0   converges to 𝑓(𝑥) = 𝑒𝑥 . 

 

Ex.  Show that the series 
2

𝜋
−

4

𝜋
∑

cos(2𝑘𝑥)

(2𝑘−1)(2𝑘+1)
∞
𝑘=1   converges uniformly on ℝ.    

(This is the Fourier series for 𝑓(𝑥) = |𝑠𝑖𝑛𝑥|;   𝑥 ∈ ℝ.)    

 

 

 

 

 

 

 

 

 

𝑓(𝑥) = |𝑠𝑖𝑛𝑥| 

−2𝜋                            −𝜋                                  0                               𝜋                               2𝜋 

1 
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If we take 𝑓𝑛(𝑥) =
cos(2𝑛𝑥)

(2𝑛−1)(2𝑛+1)
 ;   then    

|𝑓𝑛(𝑥)| = |
cos(2𝑛𝑥)

(2𝑛−1)(2𝑛+1)
| ≤

1

4𝑛2−1
= 𝑀𝑛    for all  𝑥 ∈ ℝ.     

 

∑
1

4𝑛2−1
∞
𝑛=1   converges by either the integral test or the comparison test with 

∑
1

3𝑛2
∞
𝑛=1   (which converges because it’s a constant multiple of a p-series with 

𝑝 > 1).     

 

Thus ∑
cos(2𝑘𝑥)

(2𝑘−1)(2𝑘+1)
∞
𝑘=1  converges uniformly for all 𝑥 ∈ ℝ by the Weierstrass 

𝑀-test. 

Hence so does  
2

𝜋
−

4

𝜋
∑

cos(2𝑘𝑥)

(2𝑘−1)(2𝑘+1)
∞
𝑘=1   . 

 

Ex.  Determine where ∑
𝑥

𝑛
𝑒−𝑛𝑥∞

𝑛=1  converges pointwise and uniformly. 

 

For pointwise convergence:     

Apply the ratio test.      

   lim
𝑛→∞

|(
𝑥

𝑛+1
)𝑒−(𝑛+1)𝑥|

|
𝑥
𝑛

𝑒−𝑛𝑥|
= lim

𝑛→∞
(

𝑛

𝑛+1
) (

𝑒𝑛𝑥

𝑒(𝑛+1)𝑥) = lim
𝑛→∞

(
𝑛

𝑛+1
) (

1

𝑒𝑥) < 1 

              Since lim
𝑛→∞

𝑛

𝑛+1
= 1,    lim

𝑛→∞
(

𝑛

𝑛+1
) (

1

𝑒𝑥) < 1  when 𝑥 > 0 

                                                                                              > 1  when 𝑥 < 0. 

   So the series converges for 𝑥 > 0 and diverges for 𝑥 < 0. 

 

    At 𝑥 = 0;     ∑
𝑥

𝑛
𝑒−𝑛𝑥∞

𝑛=1 = ∑ 0 = 0;∞
𝑛=1      so the series converges. 



5 
 

For uniform convergence we want to use the Weierstrass 𝑀-test. 

        Let 𝑓𝑛(𝑥) =
𝑥

𝑛
𝑒−𝑛𝑥 ≥ 0,  for 𝑥 ≥ 0  (the series can’t converges uniformly 

                                                                                 for values of 𝑥 where it diverges). 

   To use the Weierstrass 𝑀-test we need to find an upper bound for |𝑓𝑛(𝑥)| 

   when 𝑥 ≥ 0. So let’s find the absolute maximum/minimum values for 𝑓𝑛(𝑥).  
 

   𝑓𝑛
′(𝑥) =

1

𝑛
[𝑥(−𝑛)𝑒−𝑛𝑥 + 𝑒−𝑛𝑥] =

1

𝑛
(1 − 𝑛𝑥)𝑒−𝑛𝑥 = 0 

              implies 𝑥 =
1

𝑛
 . 

   𝑓𝑛′(𝑥) goes from positive to negative as 𝑥 goes through 𝑥 =
1

𝑛
 , so 𝑥 =

1

𝑛
 is a  

   local maximum.  Since this is the only critical point, it must be a global maximum 

   (notice that the function is increasing everywhere on 0 ≤ 𝑥 <
1

𝑛
 and decreasing 

    everywhere on 
1

𝑛
< 𝑥 < ∞). 

 

    Since 𝑓𝑛(𝑥) ≥ 0,  we have |𝑓𝑛(𝑥)| = 𝑓𝑛(𝑥).  Thus a global maximum of 𝑓𝑛(𝑥) 

    is a global maximum of |𝑓𝑛(𝑥)|. 

    𝑓𝑛 (
1

𝑛
) =

1

𝑛

𝑛
𝑒−𝑛(

1

𝑛
) =

1

𝑛2 𝑒−1     ⟹     |𝑓
𝑛
(𝑥)| = 𝑓

𝑛
(𝑥) ≤

1

𝑛2
𝑒−1 = 𝑀𝑛  

     in the Weierstrass 𝑀-test. 

 

   ∑ 𝑀𝑛 = ∑
1

𝑛2 𝑒−1 = 𝑒−1∞
𝑛=1

∞
𝑛=1 ∑

1

𝑛2
∞
𝑛=1  ;   which converges because it’s a  

                                                                                  constant time a 𝑝-series with 𝑝 > 1. 

 

   Thus ∑
𝑥

𝑛
𝑒−𝑛𝑥∞

𝑛=1  converges uniformly for 𝑥 ≥ 0.                            
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Ex. Show ∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1  converges pointwise for all |𝑥| ≤ 1, but not uniformly. 

 

∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1 = 𝑥2[

1

1+𝑥2 +
1

(1+𝑥2)2 +
1

(1+𝑥2)3 + ⋯ ]  

                        =
𝑥2

1+𝑥2 [1 +
1

1+𝑥2 +
1

(1+𝑥2)2 + ⋯ ];    [geometric series].  

 

If 𝑥 ≠ 0, then |
1

1+𝑥2| < 1, so the sum inside the bracket is 
𝑎

1−𝑟
 , where 𝑎 = 1 and 

𝑟 =
1

1+𝑥2 .   

 

∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1 =

𝑥2

1+𝑥2 [
1

1−
1

1+𝑥2

] = 𝑥2 [
1

1+𝑥2−1
] = 1.  

 

If 𝑥 = 0, all of the terms are 0, so  ∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1 = 0.  

 

So ∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1 = 1         if 𝑥 ≠ 0,  |𝑥| ≤ 1 

                              = 0         if 𝑥 = 0. 

Thus ∑
𝑥2

(1+𝑥2)𝑛
∞
𝑛=1  converges for all |𝑥| ≤ 1.  

 

 

To show that the convergence is not uniform, we show that the partial sums 

𝑆𝑛(𝑥) don’t converge uniformly to: 

                      𝑆(𝑥) = 1        if 𝑥 ≠ 0,  |𝑥| ≤ 1 

                             = 0         if 𝑥 = 0 
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𝑆𝑛(𝑥) = ∑
𝑥2

(1+𝑥2)𝑗
𝑛
𝑗=1 =

𝑥2

1+𝑥2 [1 +
1

1+𝑥2 +
1

(1+𝑥2)2 + ⋯ +
1

(1+𝑥2)𝑛−1].  

    

   Now since 
1−𝑟𝑛

1−𝑟
= 1 + 𝑟 + 𝑟2 + ⋯ + 𝑟𝑛−1 we get:     

        𝑆𝑛(𝑥) = 
𝑥2

1+𝑥2 [
1−

1

(1+𝑥2)𝑛

1−
1

1+𝑥2

] =
𝑥2(1−

1

(1+𝑥2)𝑛)

1+𝑥2−1
= 1 −

1

(1+𝑥2)𝑛 .  

 

For 𝑆𝑛(𝑥) → 𝑆(𝑥) uniformly we would need to show that for all 𝜖 > 0 there 

exists an 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then: 

                       |𝑆𝑛(𝑥) − 𝑆(𝑥)| < 𝜖     for all 𝑥 with |𝑥| ≤ 1.  

 

If 𝑥 ≠ 0 and |𝑥| ≤ 1, we know that 𝑆(𝑥) = 1.  So our epsilon statement becomes: 

                       |1 −
1

(1+𝑥2)
𝑛 − 1| = |−

1

(1+𝑥2)
𝑛| < 𝜖   for all 𝑥 ≠ 0 with |𝑥| ≤ 1. 

 

Now let’s show we can’t find an 𝑁 that works for all 𝑥 with |𝑥| ≤ 1, 𝑥 ≠ 0.  

 

 

 

Choose  𝜖 =
1

2
 .   

If you fix an 𝑁, no matter how large it is, we can always find a point 𝑥 with 

  |𝑥| ≤ 1 , 𝑥 ≠ 0 such that        |−
1

(1+𝑥2)
𝑛| ≥

1

2
 . 
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For example, let’s show we can always find an 𝑥 with 
1

(1+𝑥2)𝑛 =
1

2
 . 

                                        
1

(1+𝑥2)𝑛 =
1

2
 

                               (1 + 𝑥2)𝑛 = 2  

                                     1 + 𝑥2 = 2
1

𝑛 

                                             𝑥2 = 2
1

𝑛 − 1 

                                               𝑥 = ±(2
1

𝑛 − 1)
1

2       (notice that |𝑥| ≤ 1, 𝑥 ≠ 0) 

 

 

So no matter how large 𝑁 is there is always an 𝑥 ≠ 0, |𝑥| ≤ 1 where  

                           |𝑆𝑛(𝑥) − 𝑆(𝑥)| =
1

2
≥ 𝜖 =

1

2
 .    

Thus 𝑆𝑛(𝑥) does not converge uniformly to 𝑆(𝑥) on |𝑥| ≤ 1. 

 

Note that ∑
𝑥2

(1+𝑥2)
𝑛

∞
𝑛=1  does converge uniformly to 1 on 0 < 𝑎 ≤ |𝑥| ≤ 1. 

We can see this by: 

        |𝑆𝑛(𝑥) − 𝑆(𝑥)| = |1 −
1

(1+𝑥2)
𝑛 − 1| = |−

1

(1+𝑥2)
𝑛| =

1

(1+𝑥2)
𝑛 .    

 

        But for  0 < 𝑎 ≤ |𝑥| ≤ 1:                
1

(1+𝑥2)𝑛 ≤   
1

(1+𝑎2)𝑛 . 
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So if we can force 
1

(1+𝑎2)𝑛 < 𝜖 then we can force |𝑆𝑛(𝑥) − 𝑆(𝑥)| =
1

(1+𝑥2)
𝑛 < 𝜖. 

                                               
1

(1+𝑎2)𝑛 < 𝜖 

                                           (1 + 𝑎2)𝑛 > 
1

𝜖
 

                                   (𝑛)𝑙𝑛(1 + 𝑎2) > ln(
1

𝜖
)         

                                                                   𝑛 >
ln(

1
𝜖

)

ln(1+𝑎2)
 ;    for 0 < 𝑎 ≤ |𝑥| ≤ 1.  

 

     Choose 𝑁 > max (0,
ln(

1
𝜖

)

ln(1+𝑎2)
),        (if 𝜖 > 1,   ln (

1

ϵ
) < 0).  

      Now if we work the inequalities backward from  𝑛 >
ln(

1
𝜖

)

ln(1+𝑎2)
 ,         we get: 

         |𝑆𝑛(𝑥) − 𝑆(𝑥)| = |1 −
1

(1+𝑥2)
𝑛 − 1| = |−

1

(1+𝑥2)
𝑛|    

                                      ≤
1

(1+𝑎2)
𝑛             for  0 < 𝑎 ≤ |𝑥| ≤ 1 

                                           < 𝜖.  

 

Note: we could also show that ∑
𝑥2

(1+𝑥2)
𝑛

∞
𝑛=1   converges uniformly to 1 on        

0 < 𝑎 ≤ |𝑥| ≤ 1 with the Weierstrass 𝑀-test by letting 𝑓𝑛(𝑥) =
𝑥2

(1+𝑥2)
𝑛 and 

showing for any 𝑎 > 0, there exists an 𝑁 such that for 𝑛 ≥ 𝑁, |𝑓𝑛(𝑥)|takes its 

maximum value at 𝑥 = 𝑎.  Thus we have: 

                               |𝑓𝑛(𝑥)| = |
𝑥2

(1+𝑥2)
𝑛| ≤

1

(1+𝑎2)
𝑛 = 𝑀𝑛.   

∑ 𝑀𝑛
∞
𝑛=1  converges because it’s a geometric series with |𝑟| =

1

1+𝑎2 < 1 .                       
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Recall that the radius of convergence for a power series ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  is given 

by 𝑟 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| if the limit exists (you get this from applying the ratio test to 

the terms of the power series).  This means that given any 𝑥 such that       

|𝑥 − 𝑎| < 𝑟, the power series will converge absolutely for that value of 𝑥. 

 

 

Theorem:  Let 𝑟 be the radius of convergence of the power series 

 ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 .  Then ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞

𝑛=0  converges uniformly for all 𝑥 such 

that |𝑥 − 𝑎| ≤ 𝜌 < 𝑟. 

 

Proof:  Let 𝜌 be any number such that 0 < 𝜌 < 𝑟.  Then for any 𝑥 such that 

|𝑥 − 𝑎| ≤ 𝜌 we have: 

                    |𝑐𝑛(𝑥 − 𝑎)𝑛| ≤ |𝑐𝑛|𝜌𝑛.    

 

A power series converges absolutely for any 𝑥 with |𝑥 − 𝑎| = 𝜌 < 𝑟.   

 

Let 𝑀𝑛 = |𝑐𝑛|𝜌𝑛  and  𝑓𝑛(𝑥) = 𝑐𝑛(𝑥 − 𝑎)𝑛. 

Then |𝑓𝑛(𝑥)| ≤ 𝑀𝑛  and ∑ 𝑀𝑛
∞
𝑛=0  converges.  

 

Thus by the Weierstrass 𝑀 Test  ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  converges uniformly for all 𝑥 

such that |𝑥 − 𝑎| ≤ 𝜌 < 𝑟. 
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Theorem:  Suppose {𝑓𝑛(𝑥)} is a sequence of functions which are integrable on 

[𝑎, 𝑏] and uniformly converge to 𝑓(𝑥), an integrable function on [𝑎, 𝑏] then 

                              ∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∫ 𝑓𝑛(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
. 

 

Proof:  Since {𝑓𝑛(𝑥)} converges uniformly to 𝑓(𝑥) we know given any 𝜖 > 0 there 

exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ [𝑎, 𝑏],  if 𝑛 ≥ 𝑁 then 

                                          |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜖

𝑏−𝑎
 .    

So for 𝑛 ≥ 𝑁: 

     | ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑓𝑛(𝑥)𝑑𝑥| =
𝑏

𝑎

𝑏

𝑎
| ∫ (𝑓(𝑥) − 𝑓𝑛(𝑥))𝑑𝑥|

𝑏

𝑎
 

                                                       ≤ ∫ |𝑓(𝑥) − 𝑓𝑛(𝑥)|𝑑𝑥
𝑏

𝑎
 

                                                       ≤ ∫
𝜖

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

𝜖

𝑏−𝑎
(𝑏 − 𝑎) = 𝜖.  

So ∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∫ 𝑓𝑛(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
.  

 

 Since  ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  converges uniformly for all 𝑥 such that                               

|𝑥 − 𝑎| ≤ 𝜌 < 𝑟, where 𝑟 is the radius of convergence of the power series, it 

follows from the previous theorem that: 

                   ∫ ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 𝑑𝑥 = ∑ ∫ 𝑐𝑛(𝑥 − 𝑎)𝑛𝑑𝑥

𝑞

𝑝
∞
𝑛=0

𝑞

𝑝
 

as long as |𝑝 − 𝑎| < 𝑟, |𝑞 − 𝑎| < 𝑟. 

This allows us to find Taylor series (i.e. a power series) representation of some 

function within their radius of convergence. 
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Ex.  Find a power series representation of 𝑓(𝑥) = 𝑡𝑎𝑛−1(𝑥) for |𝑥| < 1.   

 

    𝑡𝑎𝑛−1𝑥 = ∫
1

1 + 𝑡2
𝑑𝑡

𝑡=𝑥

𝑡=0

= ∫ (1 − 𝑡2 + 𝑡4 − 𝑡6 + ⋯ (−1)𝑛𝑡2𝑛 + ⋯ )𝑑𝑡
𝑡=𝑥

𝑡=0

 

                   

                               = 𝑡 −
𝑡3

3
+

𝑡5

5
−

𝑡7

7
+ ⋯ +

(−1)𝑛𝑡
2𝑛+1

2𝑛+1
+ ⋯ |𝑡=0

𝑡=𝑥      

 

                = 𝑥 −
𝑥3

3
+

𝑥5

5
−

𝑥7

7
+ ⋯ +

(−1)𝑛𝑥
2𝑛+1

2𝑛+1
+ ⋯ = ∑

(−1)𝑛𝑥
2𝑛+1

2𝑛+1
∞
𝑛=0  .      

 

Notice that this power series representation does converge at 𝑥 = 1 and gives us 

an interesting expression for 𝑡𝑎𝑛−11 =
𝜋

4
. 

𝑡𝑎𝑛−11 =
𝜋

4
= 1 −

1

3
+

1

5
−

1

7
+ ⋯ +

(−1)𝑛

2𝑛 + 1
+ ⋯ 
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Theorem: Suppose {𝑓𝑛(𝑥)} is a sequence of functions on [𝑎, 𝑏] that converge 

pointwise to 𝑓(𝑥).  Suppose that {𝑓𝑛′(𝑥)} converges uniformly on [𝑎, 𝑏] to a 

continuous function 𝑔(𝑥).  Then 𝑓(𝑥) is differentiable on [𝑎, 𝑏] and                      

𝑓′(𝑥) = lim
𝑛→∞

𝑓𝑛′(𝑥). 

 

Proof:  By the previous theorem:    lim
𝑛→∞

∫ 𝑓𝑛′(𝑡)𝑑𝑡
𝑥

𝑎
= ∫ lim

𝑛→∞
𝑓𝑛

′(𝑡)𝑑𝑡
𝑥

𝑎
  

                                               lim
𝑛→∞

(𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)) = ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝑎
 

                                                              𝑓(𝑥) − 𝑓(𝑎) = ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝑎
. 

 

Since 𝑔(𝑡) is continuous we know from the fundamental theorem of calculus 

that:    𝑓′(𝑥) = 𝑔(𝑥).   

 

 Thus: 

 {𝑓𝑛′(𝑥)} converges uniformly on [𝑎, 𝑏] to a continuous function 𝑔(𝑥) = 𝑓′(𝑥) 

and  𝑓′(𝑥) = lim
𝑛→∞

𝑓𝑛′(𝑥). 
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Theorem:  If 𝑓(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0  has a radius of convergence of 𝑟, then  

𝑓′(𝑥) = ∑ 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1

∞

𝑛=1

 

also has a radius of convergence of 𝑟. 

 

Proof: 

         Let 𝑆𝑛(𝑥) = ∑ 𝑐𝑖(𝑥 − 𝑎)𝑖𝑛
𝑖=0 . 

         Each 𝑆𝑛(𝑥) is differentiable and  𝑆𝑛′(𝑥) = ∑ 𝑖𝑐𝑖(𝑥 − 𝑎)𝑖−1𝑛
𝑖=1 . 

 

If {𝑆𝑛
′ (𝑥)} converges uniformly in |𝑥 − 𝑎| ≤ 𝜌 < 𝑟 (we haven’t shown this, but 

it’s true), then it converges to a continuous function (since all of the {𝑆𝑛
′ (𝑥)} are 

continuous). Thus from our previous theorem: 

                    𝑓′(𝑥) = lim
𝑛→∞

𝑆𝑛
′ (𝑥) = ∑ 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1∞

𝑛=1 . 

 

 

Ex.  This means we can find the Taylor series of 𝑓′(𝑥) by differentiating the Taylor 

series of 𝑓(𝑥) term by term and it will have the same radius of convergence as 

the Taylor series for 𝑓(𝑥). 

 

                 𝑓(𝑥) =
1

1 − 𝑥
= ∑ 𝑥𝑛 ,                            𝑓𝑜𝑟 |𝑥| < 1

∞

𝑛=0

 

               𝑓′(𝑥) =
1

(1−𝑥)2 = ∑ 𝑛𝑥𝑛−1 ,                   𝑓𝑜𝑟 |𝑥| < 1∞
𝑛=1  

                𝑓′′(𝑥) =
2

(1−𝑥)3 = ∑ 𝑛(𝑛 − 1)𝑥𝑛−1 ,     𝑓𝑜𝑟 |𝑥| < 1∞
𝑛=2 . 


