Def. Let $C(I) = \{$ **bounded continuous functions** $f: I \subseteq \mathbb{R} \to \mathbb{R}\}$

Note: If I is closed and bounded then any continuous function is bounded on I .

 $C(I)$ is a metric space with the distance defined as:

$$
d(f(x), g(x)) = \sup_{x \in I} |f(x) - g(x)|
$$

1.
$$
d(f(x), g(x)) = \sup_{x \in I} |f(x) - g(x)| \ge 0
$$
; and

$$
d(f(x), g(x)) = 0
$$
 implies $f(x) = g(x)$.

2.
$$
d(f(x), g(x)) = d(g(x), f(x)).
$$

3. $d(f(x), g(x)) \leq d(f(x), h(x)) + d(h(x), g(x)).$

This is true because if $A(x) = B(x) + E(x)$ then by the triangle inequality: $|A(x)| \leq |B(x)| + |E(x)|$ for any $x \in I$.

Thus we have: sup ∈ $|A(x)| \leq$ sup ∈ $|B(x)| + \sup$ ∈ $|E(x)|$.

Now let $A(x) = f(x) - g(x)$, $B(x) = f(x) - h(x)$, $E(x) = h(x) - g(x)$. This gives us: $d(f(x), g(x)) \leq d(f(x), h(x)) + d(h(x), g(x)).$

Notice that a sequence of functions $f_n(x) \in C(I)$ converges to $f(x)$ with this metric if given any $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $d(f_n(x), f(x)) = \sup$ ∈ $|f_n(x) - f(x)| < \epsilon.$

This ϵ statement is equivalent to saying that $|f_n(x) - f(x)| < \epsilon$ for all $x \in I$. Thus convergence in $C(I)$ is the same as uniform convergence.

We already know that if $f_n(x)$ converges uniformly to $f(x)$ and all of the $f_n(x)$ are continuous then so is $f(x)$. Our goal is to show that $C(I)$ is complete with the metric described above. Thus we must show that every Cauchy sequence in $C(I)$ converges in $C(I)$. Later in this section we'll see that if $\{f_n(x)\}$ is a Cauchy sequence in $C(I)$ then $\{f_n(x)\}$ converges uniformly to a function $f(x)$. Since each f_n is continuous, f must also be continuous. We will then show that since each f_n is bounded on I and $\{f_n(x)\}$ and converges uniformly to a function $f(x)$, then $f(x)$ is also bounded on I. Thus any Cauchy sequence in $C(I)$ converges to a function in $C(I)$. Hence $C(I)$ is a complete metric space.

Recall that:

Def. Let V be a vector (linear) space. A real valued function $\|\cdot\|$ on V is called a **norm** if for each $v, w \in X$ and $\alpha \in \mathbb{R}$:

- 1. $||v + w|| \le ||v|| + ||w||$ (Triangle inequality)
- 2. $\|\alpha v\| = |\alpha| \|v\|$ (positive homogenity)
- 3. $||v|| \ge 0$ and $||v|| = 0$ if and only if $v = 0$.

Ex. \mathbb{R}^n is a normed linear space with $\nu=< a_1,...,a_n > \in \mathbb{R}^n$; and

$$
||v|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}.
$$

Given any normed vector space V we can always define a metric on V by

$$
d(v, w) = ||v - w||.
$$

Ex. $C(I)$ is a vector space. We can define a norm on $C(I)$ by

$$
||f||_{\infty} = \sup_{x \in I} |f(x)|, \quad f \in C(I).
$$

Def. Given a sequence $\{\nu_n\}\subseteq V$, a normed vector space, we say that $\{\boldsymbol{\nu_n}\}$ **converges to** v **with respect to the norm** $\lVert \cdot \rVert$ **on** V **if** $\{ v_n \}$ **converges to** v **with** respect to the metric $d(v, w) = ||v - w||$. That is, given any $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $d(v_n, v) = ||v_n - v|| < \epsilon$.

Def. Given a normed vector space V , we say that V is complete with respect to ||⋅|| if *V* is complete with respect to the metric $d(v, w) = ||v - w||$.

Def. A complete normed vector space is called a **Banach space**.

Ex. \mathbb{R}^n is a Banach space with the standard norm on \mathbb{R}^n .

Ex. $C(I)$ is a Banach space with $d\big(f(x), g(x)\big) = \sup$ ∈ $|f(x) - g(x)|$. We will see this shortly.

Def. Let V and W be normed vector spaces. A linear transformation, T , from V to W is called an **operator from V to W**. T is called **bounded** if there is an $M \in \mathbb{R}$ such that :

$$
||T(v)||_W \le M||v||_V \quad \text{for all } v \in V.
$$

Ex. Let $T: C[0,3] \to \mathbb{R}$ by $T(f) = \int_0^3 f(x) dx$.

 T is bounded because:

$$
||T(f)|| = \left\| \int_0^3 f(x) dx \right\| \le (3 - 0) \sup_{0 \le x \le 3} |f(x)| = 3 ||f||_{\infty}.
$$

The set of bounded linear operators from V to W , $\mathcal{L}(V, W)$, is also a normed vector space. We can define a norm on $L(V, W)$ by

$$
||T|| = inf{M}||T(v)||_W \le M||v||_V
$$
 for all $v \in V$.

This norm is often called the **operator norm**.

Ex. Let
$$
T: C[0,3] \to \mathbb{R}
$$
 by $T(f) = \int_0^3 f(x) dx$. Then

$$
||T|| = \inf\{M \mid \left\| \int_0^3 f(x) dx \right\| \le M ||f||_{\infty} \text{ for all } f \in C[0,3] \}.
$$

From the previous example we know that $||T|| \leq 3$. However, we also know that $f(x) = 1 \in C[0,3]$ and $T(f) = \int_0^3 1 dx = 3 = 3$ $\int_{0}^{5} 1 dx = 3 = 3 ||f||_{\infty}$, so $||T|| = 3.$

Ex. Describe $N_r(f)$, a neighborhood of radius r centered at $f \in C[0,1]$.

 $y = g(x)$ is in $N_r(f)$ if the graph of $y = g(x)$ lies between the dotted green curves given by $y = f(x) + r$ and $y = f(x) + r$ when $0 \le x \le 1$.

- Ex. Let $E \subseteq C[0,1]$, with $E = \{f \in C[0,1] |$ sup $0 \leq x \leq 1$ $|f(x)| < 1$. Notice that $E = B_1(g(x) = 0)$, the ball of radius 1 around $g(x) = 0$ in $C[0,1].$
	- a. Is E open in $C[0,1]$? If so, prove it.
	- b. If $g\in \mathcal{C}[0,1]$ and $\, \sup$ $0 \leq x \leq 1$ $|g(x)| = 1$, is g a limit point of E ?
	- c. Is E bounded in $C[0,1]$?
	- d. Is E totally bounded in $C[0,1]$?
		- a. Yes, E is open in $C[0,1]$. To prove this we must show that every element of E is an interior point. That is, given any $f \in E$, there exists a neighborhood of f , $N_r(f)$, such that $N_r(f)\subseteq E$.

$$
N_r(f) = \{ g \in C[0,1] | d(f,g) < r \}
$$
\n
$$
= \{ g \in C[0,1] | \sup_{0 \le x \le 1} |f(x) - g(x)| < r \}
$$

Since $|f(x)|$ is a continuous function on $[0,1]$ it attains its maximum value. Let $\sup |f(x)| = K < 1$. $0 \le x \le 1$

Choose
$$
r = \frac{1-K}{2}
$$
.
Then: $N_{\frac{1-K}{2}}(f) = \{g \in C[0,1] | \sup_{0 \le x \le 1} |f(x) - g(x)| < \frac{1-K}{2}\}.$

Claim: N_{1-K} 2 $(f) \subseteq E$.

We have to show that for any $g \in N_{1-K}$ 2 (f) , g is also in E . That is, we need to show that SUP $0 \leq x \leq 1$ $|g(x)| < 1.$

$$
g \in N_{\frac{1-K}{2}}(f) \implies \sup_{0 \le x \le 1} |g(x) - f(x)| < \frac{1-K}{2}
$$

$$
\frac{K-1}{2} < g(x) - f(x) < \frac{1-K}{2}; \quad \text{for all } 0 \le x \le 1.
$$

$$
f(x) + \frac{K-1}{2} < g(x) < f(x) + \frac{1-K}{2}
$$

Since sup $0 \leq x \leq 1$ $|f(x)| = K$, $-K \le f(x) \le K$; for all $0 \le x \le 1$.

Thus we have:

2

$$
-K + \frac{K-1}{2} \le f(x) + \frac{K-1}{2} < g(x) < f(x) + \frac{1-K}{2} \le K + \frac{1-K}{2}
$$
\n
$$
-\left(\frac{K+1}{2}\right) \le f(x) + \frac{K-1}{2} < g(x) < f(x) + \frac{1-K}{2} \le \frac{K+1}{2}
$$

But since $0 \leq K < 1$ we have:

$$
-1 < -\left(\frac{K+1}{2}\right) \le f(x) + \frac{K-1}{2} < g(x) < f(x) + \frac{1-K}{2} \le \frac{K+1}{2} < 1.
$$

These inequalities hold for all $0 \leq x \leq 1$, so sup $0 \leq x \leq 1$ $|g(x)| < 1$, and $g(x) \in E$. Thus N_{1-K} $(f) \subseteq E$ and E is an open set in $C[0,1]$.

b. If $|\text{sup } |g(x)| = 1$, let's show $g(x)$ is a limit point of E . $0 \leq x \leq 1$

To be a limit point we must show that every neighborhood of $g(x)$, $N_r(g)$, intersects E in some point other than g.

We can always construct a function $h \in C[0,1]$ such that $h(x) = g(x)$ if $|g(x)| < 1 - \frac{r}{2}$ 2

$$
= 1 - \frac{r}{2} \quad \text{if} \quad g(x) \ge 1 - \frac{r}{2}
$$

$$
= \frac{r}{2} - 1 \quad \text{if} \quad g(x) \le \frac{r}{2} - 1.
$$

Now if we take $r < \frac{1}{2}$ $\frac{1}{2}$, then $h(x) \in E$ and $N_r(g)$.

If $r \geq \frac{1}{2}$ $\frac{1}{2}$, take $h(x)$ defined with $r=\frac{1}{2}$ $\frac{1}{2}$, then $h(x) \in E$ and $N_r(g)$. So $g(x)$ is a limit point of E.

c. Yes, E is bounded because for any $f \in E$, $d(f, g(x) = 0) < 1$.

d. No, E is not totally bounded.

Then by the triangle inequality we get:

$$
\frac{3}{4} = d(f_n, f_m) \le d(f_n, g) + d(g, f_m) < \frac{1}{4} + \frac{1}{4} = \frac{1}{2}
$$

which is a contradiction. Thus $B_{\frac{1}{2}}$ 4 (g) can contain at most one f_n .

Thus no finite number of balls of radius $\frac{1}{4}$ will cover $\{f_n\}$ and thus no finite number of balls of radius $\frac{1}{4}$ will cover E .

Theorem: $f_n(x)$ converges uniformly to $f(x)$ on *I* if and only if for all $\epsilon > 0$ there exists an $N\in \mathbb{Z}^+$, such that for all $x\in I$, if $n,m\geq N$ then $|f_n(x)-f_m(x)|<\epsilon$.

(As we will see shortly this means, if $\{f_n(x)\} \subseteq \mathcal{C}(I)$, then $\{f_n(x)\}$ converges to $f(x) \in C(I)$, if and only if $\{f_n(x)\}\$ is a Cauchy sequence in $C(I)$).

Proof: Assume that $f_n(x)$ converges uniformly to $f(x)$ on I.

By the triangle inequality we have:

 $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)|$

Since $f_n(x)$ converges uniformly to $f(x)$ on I , there exists $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ $\frac{1}{2}$ for any $x \in I$.

And, of course, if $m \geq N$ then $|f_m(x) - f(x)| < \frac{\epsilon}{2}$ $\frac{1}{2}$ for any $x \in I$.

Thus if $m, n \geq N$ then we have for any $x \in I$:

$$
|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Now assume for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n, m \ge N$ then $|f_n(x) - f_m(x)| < \epsilon$.

For each $x\in I$, $\{f_n(x)\}$ is a Cauchy sequence of real numbers and thus converges to a real number $f(x)$.

So lim $\lim_{n\to\infty} f_n(x) = f(x)$ (this is a pointwise limit). Now we must show that $f_n(x)$ converges uniformly to $f(x)$.

By assumption, there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n, m \geq N$ then $|f_n(x) - f_m(x)| < \epsilon$. This is true for all $m \ge N$, so let m go to ∞ . So we have: there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n, m \geq N$ then $|f_n(x) - f(x)| \leq \epsilon$. and $f_n(x)$ converges to $f(x)$ uniformly.

 Now let's see why a set of bounded uniformly convergent continuous functions must converge to a bounded continuous function. Suppose $|f_n(x)| \leq M_n$ for all $x \in I$ and each n. How do we know that as n goes to infinity, M_n doesn't go to infinity?

By the previous theorem we know that any Cauchy sequence in $C(I)$, $\{f_n(x)\}$, converges to uniformly to some $f(x)$ on I (which must be continuous since all of the $f_n's$ are). Thus we have for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \geq N$ then $|f(x) - f_n(x)| < \epsilon$.

In particular, $|f(x) - f_N(x)| < \epsilon$ for all $x \in I$. Thus we have:

$$
-\epsilon < f(x) - f_N(x) < \epsilon
$$
\n
$$
f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon
$$
\n
$$
-M_N - \epsilon \le f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon \le M_N + \epsilon
$$

Thus $|f(x)| \leq M_N + \epsilon$ and $f(x)$ is bounded.

Hence any Cauchy sequence in $C(I)$ must converge to a bounded continuous function, $f(x)$, thus $f(x) \in C(I)$ and $C(I)$ is complete.