The Metric Space C(I)- HW Problems

1. Consider the metric space C[0,1] with the metric $d(f,g) = \sup_{0 \le x \le 1} |f(x) - g(x)|$. Let $E = N_{\frac{1}{2}}(x^2) = \{f \in C[0,1] | d(x^2, f) < \frac{1}{2}\}.$

(This is the same as the ball of radius $\frac{1}{2}$ centered at x^2 , $B_{\frac{1}{2}}(x^2)$)

a. Is $g(x) = x^3 \in E$? Prove your answer.

b. Give an example of a subset of C[0,1] that is totally bounded (don't use parts c or d of this problem).

c. Let $H = \{f_n(x) = \frac{x}{n}; n \in \mathbb{Z}^+, 0 \le x \le 1\} \subseteq C[0,1]$. Is H totally bounded? Give justification for your answer.

d. Prove $J = \{f(x) = c | 0 \le c \le 2, 0 \le x \le 1\} \subseteq C[0,1]$ is totally bounded. Hint: consider problem #4 in the HW on totally bounded sets.