Uniform Convergence

Def. Suppose $\{f_n(x)\}\$ is a sequence of functions $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where *I* is an interval (bounded or unbounded, open, closed, or neither) in ℝ. We say ${f_n(x)}$ **converges pointwise to** $f(x)$ **,** and write $\lim_{n\to\infty} f_n(x) = f(x)$, if for each $x \in I$, the sequence of real numbers $\{f_n(x)\}\$ converges to $f(x)$.

That is, for all $\epsilon > 0$ there exists an $N_x \in \mathbb{Z}^+$ (i.e. N_x can depend on x), such that if $n \geq N_x$ then $|f_n(x) - f(x)| < \epsilon$.

Ex. Let $f_n(x) = x^n$, on $I = [0,1]$. Prove that:

$$
\lim_{n \to \infty} f_n(x) = f(x) = 0 \quad \text{if} \quad 0 \le x < 1
$$

 $= 1$ if $x = 1$.

For example, if $x=\frac{1}{2}$ $\frac{1}{2}$, the sequence $\mathcal{E}_n(\frac{1}{2})$ $\left(\frac{1}{2}\right)\right\} = \left\{\left(\frac{1}{2}\right)$ $\frac{1}{2}$ \boldsymbol{n} $\} \rightarrow 0$ as $n \rightarrow \infty$. However, if $x=1$, the sequence $\{f_n(1)\}=\{(1)^n\}\rightarrow 1$ as $n\rightarrow \infty.$

We must show given any $\epsilon>0$ there exists an $N_{\chi}\in\mathbb{Z}^{+}$, such that if $n\geq N_{\chi}$ then $|x^n - f(x)| < \epsilon$.

If $x = 1$, then $|1^n - 1| = 0 < \epsilon$ for any n, so we can choose $N_x = 1$. If $x = 0$, then $|0^n - 0| = 0 < \epsilon$ for any n , so we again can choose $N_x = 1$.

If
$$
0 < x < 1
$$
, then: $|x^n - 0| < \epsilon$ \n $|x|^n < \epsilon$ \n $(n) \ln |x| < \ln \epsilon$ \n $n > \frac{\ln \epsilon}{\ln |x|}$ (since $\ln |x| < 0$ because $0 < x < 1$)

So choose
$$
N_x > \max\left(\frac{\ln \epsilon}{\ln |x|}, 0\right)
$$
; If $n \ge N_x$ then:

$$
|x^n - 0| = |x|^n < |x|^{\ln |x|} = (e^{\ln |x|})^{\ln |x|} = e^{\ln \epsilon} = \epsilon.
$$

Notice that each $f_n(x)$ in this example is a continuous function, but the sequence of functions converges pointwise to a discontinuous function.

Notice that for any $0 \leq x \leq 1$, \lim $\lim_{n\to\infty} f_n(x) = 0$. That is $f_n(x) \to f(x) = 0$ pointwise on $[0,1]$. Let's prove this.

We must show that for all $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $|f_n(x) - 0| < \epsilon$. Note: the *N* can depend on the point *x*.

Notice that if we choose $N > \frac{1}{\gamma}$ $\frac{1}{x}$, when $x \neq 0$, then we have:

$$
n \ge N > \frac{1}{x} \quad \text{or equivalently} \quad \frac{1}{n} < x.
$$

But if $x > \frac{1}{n}$ $\frac{1}{n}$ then $f_n(x) = 0$ so $|f_n(x) - 0| = |0 - 0| = 0 < \epsilon$. If $x = 0$, then $f_n(0) = 0$ for all n so for any $N \in \mathbb{Z}^+$, if $n \geq N$ then $|f_n(x) - 0| = |0 - 0| = 0 < \epsilon.$ Thus $f_n(x) \to f(x) = 0$ pointwise on [0,1].

However, notice that:

$$
\int_0^1 f_n(x)dx = 1 \text{ for all } n, \text{ so } \lim_{n \to \infty} \int_0^1 f_n(x)dx = 1.
$$

But
$$
\int_0^1 \lim_{n \to \infty} f_n(x)dx = \int_0^1 f(x)dx = \int_0^1 0dx = 0.
$$

So we have
$$
\lim_{n \to \infty} \int_0^1 f_n(x)dx \neq \int_0^1 \lim_{n \to \infty} f_n(x)dx.
$$

 To try to avoid having a sequence of continuous functions converging to a discontinuous function, or having a sequence of integrable functions whose integrals don't converge to the integral of the limit, we need a "stronger" definition of "convergence".

Def. A sequence of functions $\{f_n(x)\}\,$, $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where *I* is an interval (bounded or unbounded, open, closed, or neither) in ℝ, **converges uniformly to** $f(x)$ if

for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for ALL $x \in I$, if $n \geq N$ then $|f_n(x) - f(x)| < \epsilon.$

- 1. Notice that for pointwise convergence the N can depend on the point $x \in I$ as well as ϵ . For Uniform convergence the N depends only on ϵ and NOT the point $x \in I$.
- 2. Uniform convergence is a stronger condition than pointwise convergence. Thus if a sequence of functions converges uniformly to a function $f(x)$, then it must converge pointwise to $f(x)$. However, if a sequence of functions converges pointwise to $f(x)$ then it may, or may not, converge uniformly to $f(x)$.
- 3. This definition is equivalent to saying that $\lim\limits_{n\to\infty}$ sup ∈ $|f_n(x) - f(x)| = 0.$ This gives us another way to prove $\{f_n(x)\}$ does or does not converge uniformly to $f(x)$.
- Ex. Show that $\{f_n(x)\}$ converges uniformly to $f(x)$ on I if and only if lim $n\rightarrow\infty$ sup ∈ $|f_n(x) - f(x)| = 0.$
- \implies Suppose that $\{f_n(x)\}$ converges uniformly to $f(x)$ on $I.$

 We must show that lim $n\rightarrow\infty$ sup ∈ $|f_n(x) - f(x)| = 0.$ That is, given any $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ such that if $n \geq N$ then | sup ∈ $|f_n(x) - f(x)| - 0| < \epsilon$, or equivalently, sup ∈ $|f_n(x) - f(x)| < \epsilon.$

Since $\{f_n(x)\}$ converges uniformly to $f(x)$ on I we have:

for all $\epsilon > 0$ there exists an $N' \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \geq N'$ then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ (since ϵ is an arbitrary positive number we can use $\frac{\epsilon}{2}$).

Choose $N = N'$.

Then
$$
\sup_{x \in I} |f_n(x) - f(x)| \leq \frac{\epsilon}{2} < \epsilon
$$
.

Thus
$$
\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0
$$
.

 \Leftarrow Suppose lim $n\rightarrow\infty$ sup ∈ $|f_n(x) - f(x)| = 0.$

We must show that $\{f_n(x)\}$ converges uniformly to $f(x)$ on I .

That is, for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \geq N$ then $|f_n(x) - f(x)| < \epsilon$.

 Since lim $n\rightarrow\infty$ sup ∈ $|f_n(x) - f(x)| = 0$, we know there exists an $N' \in \mathbb{Z}^+$, such that if $n \geq N'$ then SUP ∈ $|f_n(x) - f(x)| < \epsilon.$

Choose $N = N'$, then we have for all $x \in I$:

$$
|f_n(x) - f(x)| \le \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.
$$

Thus $\{f_n(x)\}$ converges uniformly to $f(x)$ on $I.$

Ex. The sequence of functions $\{x^n\}$ converges pointwise to the function:

$$
f(x) = 0 \quad \text{if } 0 \le x < 1
$$

$$
= 1 \quad \text{if} \quad x = 1
$$

on $I = [0,1]$, but not uniformly.

In the first example we saw that $\{x^n\}$ converges pointwise to $f(x)$. To see that any N we use must depend on the $x \in [0,1]$, notice that if $0 < x < 1$ and we try to solve for an N that will work we get from the epsilon statement:

 $|x^n - 0| < \epsilon$ is equivalent to $n > \frac{\ln \epsilon}{\ln |x|}$ $\frac{z}{\ln|x|}$ Thus if $\epsilon < 1$, as x goes to 1, $ln\epsilon$ $\ln|x|$ goes to ∞ , thus there is no N that will work for all $0 \leq x \leq 1$.

Another way to see this is if we choose $\epsilon = \frac{1}{2}$ $\frac{1}{2}$, given any positive integer n , we can always find an x, where $0 \le x < 1$ and $|x^n - f(x)| = |x^n - 0| \ge \frac{1}{2}$ $\frac{1}{2}$.

$$
|x^n| \ge \frac{1}{2}
$$
 is equivalent to $x \ge \left(\frac{1}{2}\right)^{\frac{1}{n}}$ (notice that $0 < \left(\frac{1}{2}\right)^{\frac{1}{n}} < 1$).

Thus $\lim_{n\to\infty}$ sup ∈ $|x^n - 0| \geq \frac{1}{2}$ $\frac{1}{2} \Rightarrow \lim_{n \to \infty}$ $n\rightarrow\infty$ sup ∈ $|x^n - 0| \neq 0$.

Thus $\{x^n\}$ does not converge uniformly to $f(x) = 0$ on $0 \le x < 1$ or $0 \le x \le 1$.

Notice that if $I=[0,\frac{7}{8}]$ $\frac{1}{8}$] (or $[0,1-\alpha]$, $0 < \alpha \le 1$), $\{x^n\}$ would converge uniformly to $f(x) = 0$. In this case we would just note that: $\int \frac{\ln \epsilon}{\ln \ln \epsilon}$ $\frac{\ln \epsilon}{\ln |x|}$ | \leq $|\frac{\ln \epsilon}{\ln |\frac{7}{2}|}$ $\ln\left|\frac{7}{6}\right|$ $\frac{1}{8}$ | so we could choose $N > \max(\frac{ln \epsilon}{\sqrt{2}})$ $\ln\left|\frac{7}{8}\right|$ $\frac{7}{8}$, $0)$ which does not depend on x .

Ex. Show that the sequence of functions $f_n(x) = \frac{\sin(n^2x)}{n}$ $\frac{\pi}{n}$ converges uniformly to $f(x) = 0$ for $I = \mathbb{R}$. However, show that $f_n'(x)$ does not converge even pointwise to $f'(x)$.

To show that the sequence of functions $f_n(x) = \frac{\sin(n^2 x)}{n}$ $\frac{n}{n}$ converges uniformly to $f(x) = 0$ for $I = \mathbb{R}$, we must show:

for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ (where N doesn't depend on x), such that for all $x \in \mathbb{R}$, if $n \geq N$ then $\left| \frac{\sin(n^2x)}{n} \right|$ $\left| \frac{n(x)}{n} - 0 \right| < \epsilon.$

As usual, we start with the epsilon statement:

$$
\left|\frac{\sin(n^2x)}{n} - 0\right| = \left|\frac{\sin(n^2x)}{n}\right| \le \frac{1}{n}
$$

So if we can force $\frac{1}{n} < \epsilon$ we're almost done, because $\left|\frac{\sin(n^2x)}{n} - 0\right| \le \frac{1}{n}$.
But $\frac{1}{n} < \epsilon$ is equivalent to $n > \frac{1}{\epsilon}$.

So choose $N > \frac{1}{2}$ $\frac{1}{\epsilon}$ (notice that N depends only on ϵ and not $x \in \mathbb{R}$). If $n \geq N > \frac{1}{2}$ $\frac{1}{\epsilon}$ we have: | $sin(n^2x)$ \overline{n} $-0| = |$ $sin(n^2x)$ \overline{n} | ≤ 1 \overline{n} \lt 1 1 $\overline{\epsilon}$ $=\epsilon$.

Thus we have shown that $f_n(x) = \frac{\sin(n^2 x)}{n}$ $\frac{\partial f(x)}{\partial x}$ converges uniformly to $f(x) = 0$ for $I = \mathbb{R}$.

Now notice that
$$
f'_n(x) = \frac{n^2 \cos(n^2 x)}{n} = n \cos(n^2 x)
$$
 and $f'(x) = 0$.

However, for no value of x is \lim $\lim_{n\to\infty} f'_n(x) = 0$, in fact the $\lim_{n\to\infty}$ $\lim_{n\to\infty} f'_n(x)$ does not exist (at least it's not a finite number).

For example, when $x = 0$, lim $\lim_{n\to\infty}f'_n(x)=\lim_{n\to\infty}$ $n\rightarrow\infty$ $n = \infty$. Ex. Determine the pointwise limit on the given interval and the intervals on which the convergence is uniform for the following sequences of functions.

a.
$$
f_n(x) = \frac{x}{1 + nx^2}
$$
; $x \in \mathbb{R}$.

b.
$$
f_n(x) = \frac{\sqrt{n}x}{1 + nx^2}; \quad x \in \mathbb{R}.
$$

a. $f(x) = \lim$ $n\rightarrow\infty$ $f_n(x) = \lim_{n \to \infty}$ $n\rightarrow\infty$ $\frac{x}{1+nx^2} = 0$ for all $x \in \mathbb{R}$ (pointwise convergence)

To test uniform convergence let's find the maximum value of $|f_n(x)|$ on $\R.$

.

$$
f'_n(x) = \frac{(1+nx^2)(1)-x(2nx)}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2}.
$$

Setting $f'_n(x) = 0$ and solving we get $x = \pm \sqrt{\frac{1}{n}}$

By checking the sign of $f'_n(x)$ and using $\lim_{x\to a}$ $\lim_{x\to\pm\infty}f_n(x)=0$, we see that:

$$
x = -\sqrt{\frac{1}{n}} \text{ yields the minimum value of } f_n(x).
$$
\n
$$
x = \sqrt{\frac{1}{n}} \text{ yields the maximum value of } f_n(x).
$$
\n
$$
-\sqrt{\frac{1}{n}} \cdot \frac{1}{2\sqrt{n}} \cdot \frac{1}{2\sqrt{n}}
$$
\n
$$
f_n(x) = \frac{x}{1 + nx^2}
$$

$$
f_n\left(-\sqrt{\frac{1}{n}}\right) = \frac{-1}{2\sqrt{n}}; \qquad f_n\left(\sqrt{\frac{1}{n}}\right) = \frac{1}{2\sqrt{n}}.
$$

 So sup ∈ℝ $|f_n(x)| = \frac{1}{2\sqrt{2}}$ $2\sqrt{n}$; which goes to 0 as n goes to ∞ .

Thus $f_n(x)\to f(x)=0\;$ uniformly for all $x\in\mathbb{R}.$

b.
$$
f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sqrt{n}x}{1 + nx^2}
$$

= $\lim_{n \to \infty} \frac{\sqrt{n}x}{\sqrt{n}(\frac{1}{\sqrt{n}} + \sqrt{n}x^2)} = 0$ for all $x \in \mathbb{R}$, (pointwise convergence).

$$
f'_n(x) = \sqrt{n}(\frac{1 - nx^2}{(1 + nx^2)^2}) = 0
$$
, when $x = \pm \sqrt{\frac{1}{n}}$.

Notice that
$$
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{2} \neq 0
$$
.

So $f_n(x)$ does not converge uniformly to $f(x) = 0$ for all $x \in \mathbb{R}$.

So where does $f_n(x)\to f(x)=0\,$ uniformly?

The problem is that $|f_n(x)|$ takes a maximum value of $\frac{1}{2}$ 2 at

$$
x = \pm \sqrt{\frac{1}{n}} \text{ for all } n.
$$

However, if we remove any open interval around $x = 0$, eventually $x = \pm \int_{-\infty}^{1}$ \boldsymbol{n} will move into that open interval.

Claim: $f_n(x) \to f(x) = 0$ uniformly on any set of the form ${x \le -a}$ \cup ${x \ge a}$, $a > 0$ (i.e. for $|x| \ge a$). Note: we could also use $\{x \leq -a\} \cup \{x \geq b\}$, $a, b > 0$.

We must show that given any $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if $n \geq N$ and $|x| \ge a > 0$ then $\int_{\frac{1}{2} + i\infty}^{\sqrt{n}x}$ $\frac{\sqrt{n}x}{1+nx^2}-0\leq \epsilon.$

$$
\left|\frac{\sqrt{n}x}{1+nx^2} - 0\right| = \left|\frac{\sqrt{n}x}{1+nx^2}\right| = \frac{|x|\sqrt{n}}{|x|\left(\frac{1}{|x|}+n|x|\right)} = \frac{\sqrt{n}}{\left(\frac{1}{|x|}+n|x|\right)}
$$

$$
< \frac{\sqrt{n}}{na} = \frac{1}{a\sqrt{n}} < \epsilon
$$

$$
a\sqrt{n} > \frac{1}{\epsilon}
$$

$$
\sqrt{n} > \frac{1}{a\epsilon}
$$

$$
n > \frac{1}{a^2\epsilon^2}.
$$

So if we choose $N > \frac{1}{\sigma^2}$ $\frac{1}{a^2 \epsilon^2}$ (notice that N is independent of x) we get:

$$
n \ge N > \frac{1}{a^2 \epsilon^2}
$$

$$
\sqrt{n} > \frac{1}{a\epsilon}
$$

$$
a\sqrt{n} > \frac{1}{\epsilon}
$$

$$
\frac{\sqrt{n}}{na} = \frac{1}{a\sqrt{n}} < \epsilon.
$$

So we have:

$$
\left|\frac{\sqrt{n}x}{1+nx^2} - 0\right| = \left|\frac{\sqrt{n}x}{1+nx^2}\right| = \frac{|x|\sqrt{n}}{|x|(\frac{1}{|x|}+n|x|)} = \frac{\sqrt{n}}{(\frac{1}{|x|}+n|x|)} < \frac{\sqrt{n}}{na} < \epsilon.
$$

Thus $f_n(x) \to f(x) = 0$ uniformly on any set of the form ${x \le -a} \cup {x \ge a}, a > 0$ (i.e. for $|x| \ge a$).

A second way to see that $f_n(x)\to f(x)=0\;$ uniformly on any set of the form $S = {x \le -a} \cup {x \ge a}$, $a > 0$, is to show that $\lim_{a \to a}$ $n\rightarrow\infty$ sup x∈S $|f_n(x) - 0| = 0.$

Since
$$
f'_n(x) = \sqrt{n}(\frac{1 - nx^2}{(1 + nx^2)^2}) = 0
$$
 at $x = \pm \sqrt{\frac{1}{n}}$ we have:

sign of
$$
f'_n(x)
$$

 $-\sqrt{\frac{1}{n}}$ $-\sqrt{\frac{1}{n}}$

Given any positive number $a > 0$, for n sufficiently large, $-a < -\sqrt{\frac{1}{n}}$ $\frac{1}{n} < \sqrt{\frac{1}{n}}$ $\frac{1}{n}$ < a.

For these values of n , on the set S , the absolute maximum of $f_n(x)$ occurs at $x = a$ since $f'_n(x) < 0$ and $f_n(x) > 0$ for $x > a$, and the absolute minimum of $f_n(x)$ occurs at $x = -a$ since $f'_n(x) < 0$ and $f_n(x) < 0$ for $x < -a$.

Now notice that:

$$
\sup_{x \in S} f_n(x) = f_n(a) = \frac{\sqrt{n}a}{1 + na^2}
$$

$$
\inf_{x \in S} f_n(x) = f_n(-a) = -\frac{\sqrt{n}a}{1 + na^2}.
$$

Thus we have:

$$
\sup_{x \in S} |f_n(x)| = \frac{\sqrt{n}a}{1 + na^2}.
$$

Now we can say:

$$
0 \le \sup_{x \in S} |f_n(x)| = \frac{\sqrt{n}a}{1 + na^2} \le \frac{\sqrt{n}a}{na^2} = \frac{1}{\sqrt{n}a}.
$$

Thus we have by the squeeze theorem:

$$
\lim_{n\to\infty}\sup_{x\in S}|f_n(x)-0|=0.
$$

Theorem: If $f_n(x)$ converges to $f(x)$ uniformly on an interval $I \subseteq \mathbb{R}$, and $f_n(x)$ is continuous on I for all n , then $f(x)$ is continuous on I.

Proof: we must show that given any point $a \in I$, that for every $\epsilon > 0$ there exists $a \delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f(x) - f(a)| < \epsilon$ (here the δ can depend on the point "a").

Let's start by choosing any point $a \in I$, and fixing any $\epsilon > 0$.

By the triangle inequality we know:

$$
|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f(a)|
$$

Using the triangle inequality again, but on the 2^{nd} term on the RHS we get:

$$
|f_n(x) - f(a)| \le |f_n(x) - f_n(a)| + |f_n(a) - f(a)|
$$

Putting these 2 triangle inequalities together we get:

$$
|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|.
$$

Now let's show that each one of the terms on the RHS can be made less than ϵ 3 .

Since $f_n(x)$ converges to $f(x)$ uniformly we know there exists a $N \in \mathbb{Z}^+$ such that if $n \geq N$ then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ $\frac{1}{3}$ for any $x \in I$.

Thus the first and the third terms on the RHS can be made less than ϵ 3 by choosing any $n \geq N$, using N in the statement above.

Since $f_n(x)$ is continuous on I we know that given any ϵ 3 > 0 there exists a $\delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f_n(x) - f_n(a)| < \frac{\epsilon}{3}$ $\frac{c}{3}$.

Using this δ we have:

$$
|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|
$$

$$
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon
$$

Thus $f(x)$ is continuous on I .