Uniform Convergence

Def. Suppose $\{f_n(x)\}$ is a sequence of functions $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where I is an interval (bounded or unbounded, open, closed, or neither) in \mathbb{R} . We say $\{f_n(x)\}$ converges pointwise to f(x), and write $\lim_{n\to\infty} f_n(x) = f(x)$, if for each $x \in I$, the sequence of real numbers $\{f_n(x)\}$ converges to f(x).

That is, for all $\epsilon > 0$ there exists an $N_x \in \mathbb{Z}^+$ (i.e. N_x can depend on x), such that if $n \ge N_x$ then $|f_n(x) - f(x)| < \epsilon$.

Ex. Let $f_n(x) = x^n$, on I = [0,1]. Prove that:

$$\lim_{n \to \infty} f_n(x) = f(x) = 0 \quad if \quad 0 \le x < 1$$

= 1 *if* x = 1.

For example, if $x = \frac{1}{2}$, the sequence $\{f_n(\frac{1}{2})\} = \{(\frac{1}{2})^n\} \to 0 \text{ as } n \to \infty$. However, if x = 1, the sequence $\{f_n(1)\} = \{(1)^n\} \to 1 \text{ as } n \to \infty$.

We must show given any $\epsilon > 0$ there exists an $N_x \in \mathbb{Z}^+$, such that if $n \ge N_x$ then $|x^n - f(x)| < \epsilon$.

If x = 1, then $|1^n - 1| = 0 < \epsilon$ for any n, so we can choose $N_x = 1$. If x = 0, then $|0^n - 0| = 0 < \epsilon$ for any n, so we again can choose $N_x = 1$.

If
$$0 < x < 1$$
, then: $|x^n - 0| < \epsilon$
 $|x|^n < \epsilon$
 $(n)ln|x| < ln\epsilon$
 $n > \frac{ln\epsilon}{\ln|x|}$ (since $\ln|x| < 0$ because $0 < x < 1$)

So choose
$$N_x > \max\left(\frac{\ln\epsilon}{\ln|x|}, 0\right)$$
; If $n \ge N_x$ then:
$$|x^n - 0| = |x|^n < |x|^{\frac{\ln\epsilon}{\ln|x|}} = (e^{\ln|x|})^{\frac{\ln\epsilon}{\ln|x|}} = e^{\ln\epsilon} = \epsilon.$$

Notice that each $f_n(x)$ in this example is a continuous function, but the sequence of functions converges pointwise to a discontinuous function.

Notice that for any $0 \le x \le 1$, $\lim_{n \to \infty} f_n(x) = 0$. That is $f_n(x) \to f(x) = 0$ pointwise on [0,1]. Let's prove this.

We must show that for all $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|f_n(x) - 0| < \epsilon$. Note: the N can depend on the point x.

Notice that if we choose $N > \frac{1}{x}$, when $x \neq 0$, then we have:

$$n \ge N > \frac{1}{x}$$
 or equivalently $\frac{1}{n} < x$.

But if $x > \frac{1}{n}$ then $f_n(x) = 0$ so $|f_n(x) - 0| = |0 - 0| = 0 < \epsilon$. If x = 0, then $f_n(0) = 0$ for all n so for any $N \in \mathbb{Z}^+$, if $n \ge N$ then $|f_n(x) - 0| = |0 - 0| = 0 < \epsilon$. Thus $f_n(x) \to f(x) = 0$ pointwise on [0,1]. However, notice that:

$$\int_0^1 f_n(x)dx = 1 \text{ for all } n \text{, so } \lim_{n \to \infty} \int_0^1 f_n(x)dx = 1.$$

But $\int_0^1 \lim_{n \to \infty} f_n(x)dx = \int_0^1 f(x)dx = \int_0^1 0dx = 0.$
So we have $\lim_{n \to \infty} \int_0^1 f_n(x)dx \neq \int_0^1 \lim_{n \to \infty} f_n(x)dx.$

To try to avoid having a sequence of continuous functions converging to a discontinuous function, or having a sequence of integrable functions whose integrals don't converge to the integral of the limit, we need a "stronger" definition of "convergence".

Def. A sequence of functions $\{f_n(x)\}$, $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where *I* is an interval (bounded or unbounded, open, closed, or neither) in \mathbb{R} , **converges uniformly to** f(x) if

for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for ALL $x \in I$, if $n \ge N$ then $|f_n(x) - f(x)| < \epsilon$.

- Notice that for pointwise convergence the N can depend on the point x ∈ I as well as ε. For Uniform convergence the N depends only on ε and NOT the point x ∈ I.
- 2. Uniform convergence is a stronger condition than pointwise convergence. Thus if a sequence of functions converges uniformly to a function f(x), then it must converge pointwise to f(x). However, if a sequence of functions converges pointwise to f(x) then it may, or may not, converge uniformly to f(x).
- 3. This definition is equivalent to saying that $\lim_{n\to\infty} \sup_{x\in I} |f_n(x) f(x)| = 0$. This gives us another way to prove $\{f_n(x)\}$ does or does not converge uniformly to f(x).

- Ex. Show that $\{f_n(x)\}$ converges uniformly to f(x) on I if and only if $\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$
- \Rightarrow Suppose that $\{f_n(x)\}$ converges uniformly to f(x) on I.

We must show that $\lim_{n\to\infty} \sup_{x\in I} |f_n(x) - f(x)| = 0$. That is, given any $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|\sup_{x\in I} |f_n(x) - f(x)| - 0| < \epsilon$, or equivalently, $\sup_{x\in I} |f_n(x) - f(x)| < \epsilon$.

Since $\{f_n(x)\}$ converges uniformly to f(x) on I we have:

for all $\epsilon > 0$ there exists an $N' \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \ge N'$ then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ (since ϵ is an arbitrary positive number we can use $\frac{\epsilon}{2}$).

Choose N = N'.

Then
$$\sup_{x \in I} |f_n(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon$$
.

Thus
$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$$

 $\iff \text{Suppose } \lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$

We must show that $\{f_n(x)\}$ converges uniformly to f(x) on *I*.

That is, for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \ge N$ then $|f_n(x) - f(x)| < \epsilon$.

Since $\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$, we know there exists an $N' \in \mathbb{Z}^+$, such that if $n \ge N'$ then $\sup_{x \in I} |f_n(x) - f(x)| < \epsilon$. Choose N = N', then we have for all $x \in I$:

$$|f_n(x) - f(x)| \le \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Thus $\{f_n(x)\}$ converges uniformly to f(x) on I.

Ex. The sequence of functions $\{x^n\}$ converges pointwise to the function:

$$f(x) = 0 \quad \text{if } 0 \le x < 1$$

$$= 1$$
 if $x = 1$

on I = [0,1], but not uniformly.

In the first example we saw that $\{x^n\}$ converges pointwise to f(x). To see that any N we use must depend on the $x \in [0,1]$, notice that if 0 < x < 1 and we try to solve for an N that will work we get from the epsilon statement:

 $|x^n - 0| < \epsilon$ is equivalent to $n > \frac{\ln \epsilon}{\ln |x|}$ Thus if $\epsilon < 1$, as x goes to 1, $\frac{\ln \epsilon}{\ln |x|}$ goes to ∞ , thus there is no N that will work for all $0 \le x \le 1$. Another way to see this is if we choose $\epsilon = \frac{1}{2}$, given any positive integer n, we can always find an x, where $0 \le x < 1$ and $|x^n - f(x)| = |x^n - 0| \ge \frac{1}{2}$.

$$|x^n| \ge \frac{1}{2}$$
 is equivalent to $x \ge (\frac{1}{2})^{\frac{1}{n}}$ (notice that $0 < (\frac{1}{2})^{\frac{1}{n}} < 1$).

Thus $\lim_{n\to\infty} \sup_{x\in I} |x^n - 0| \ge \frac{1}{2} \implies \lim_{n\to\infty} \sup_{x\in I} |x^n - 0| \ne 0$.

Thus $\{x^n\}$ does not converge uniformly to f(x) = 0 on $0 \le x < 1$ or $0 \le x \le 1$.

Notice that if $I = [0, \frac{7}{8}]$ (or $[0, 1 - \alpha]$, $0 < \alpha \le 1$), $\{x^n\}$ would converge uniformly to f(x) = 0. In this case we would just note that: $\left|\frac{ln\epsilon}{\ln|x|}\right| \le \left|\frac{ln\epsilon}{\ln\left|\frac{7}{8}\right|}\right|$ so we could choose $N > \max(\frac{ln\epsilon}{\ln\left|\frac{7}{8}\right|}, 0)$ which does not depend on x.

Ex. Show that the sequence of functions $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$. However, show that $f_n'(x)$ does not converge even pointwise to f'(x).

To show that the sequence of functions $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$, we must show:

for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ (where N doesn't depend on x), such that for all $x \in \mathbb{R}$, if $n \ge N$ then $\left| \frac{\sin(n^2 x)}{n} - 0 \right| < \epsilon$.

As usual, we start with the epsilon statement:

$$\left|\frac{\sin(n^2 x)}{n} - 0\right| = \left|\frac{\sin(n^2 x)}{n}\right| \le \frac{1}{n}$$

So if we can force $\frac{1}{n} < \epsilon$ we're almost done, because $\left|\frac{\sin(n^2 x)}{n} - 0\right| \le \frac{1}{n}$.
But $\frac{1}{n} < \epsilon$ is equivalent to $n > \frac{1}{\epsilon}$.

So choose $N > \frac{1}{\epsilon}$ (notice that N depends only on ϵ and not $x \in \mathbb{R}$). If $n \ge N > \frac{1}{\epsilon}$ we have: $\left| \frac{\sin(n^2 x)}{n} - 0 \right| = \left| \frac{\sin(n^2 x)}{n} \right| \le \frac{1}{n} < \frac{1}{\frac{1}{\epsilon}} = \epsilon.$

Thus we have shown that $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$.

Now notice that
$$f'_n(x) = \frac{n^2 \cos(n^2 x)}{n} = n \cos(n^2 x)$$
 and $f'(x) = 0$.

However, for no value of x is $\lim_{n\to\infty} f'_n(x) = 0$, in fact the $\lim_{n\to\infty} f'_n(x)$ does not exist (at least it's not a finite number).

For example, when x = 0, $\lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} n = \infty.$ Ex. Determine the pointwise limit on the given interval and the intervals on which the convergence is uniform for the following sequences of functions.

a.
$$f_n(x) = \frac{x}{1+nx^2}; \quad x \in \mathbb{R}.$$

b. $f_n(x) = \frac{\sqrt{nx}}{\sqrt{nx}}; \quad x \in \mathbb{R}.$

b.
$$f_n(x) = \frac{\sqrt{nx}}{1+nx^2}; \quad x \in \mathbb{R}.$$

a. $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{1 + nx^2} = 0$ for all $x \in \mathbb{R}$ (pointwise convergence)

To test uniform convergence let's find the maximum value of $|f_n(x)|$ on \mathbb{R} .

$$f'_n(x) = \frac{(1+nx^2)(1)-x(2nx)}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2}.$$

Setting $f'_n(x) = 0$ and solving we get $x = \pm \sqrt{\frac{1}{n}}$

By checking the sign of $f_n'(x)$ and using $\lim_{x \to \pm \infty} f_n(x) = 0$, we see that:

$$x = -\sqrt{\frac{1}{n}} \text{ yields the minimum value of } f_n(x).$$

$$x = \sqrt{\frac{1}{n}} \text{ yields the maximum value of } f_n(x).$$

$$\sqrt{\frac{1}{n}, \frac{1}{2\sqrt{n}}} \qquad f_n(x) = \frac{x}{1 + nx^2}$$

$$(-\sqrt{\frac{1}{n}}, -\frac{1}{2\sqrt{n}}) \qquad \sqrt{\frac{1}{n}}$$

$$f_n\left(-\sqrt{\frac{1}{n}}\right) = \frac{-1}{2\sqrt{n}}; \qquad f_n\left(\sqrt{\frac{1}{n}}\right) = \frac{1}{2\sqrt{n}}.$$

So $\sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{2\sqrt{n}}$; which goes to 0 as n goes to ∞ .

Thus $f_n(x) \to f(x) = 0$ uniformly for all $x \in \mathbb{R}$.

b.
$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sqrt{nx}}{1 + nx^2}$$

= $\lim_{n \to \infty} \frac{\sqrt{nx}}{\sqrt{n}(\frac{1}{\sqrt{n}} + \sqrt{nx^2})} = 0$ for all $x \in \mathbb{R}$, (pointwise convergence).

$$f'_n(x) = \sqrt{n}(\frac{1-nx^2}{(1+nx^2)^2}) = 0$$
, when $x = \pm \sqrt{\frac{1}{n}}$

Notice that
$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{2} \neq 0$$

So $f_n(x)$ does not converge uniformly to f(x) = 0 for all $x \in \mathbb{R}$.

So where does $f_n(x) \rightarrow f(x) = 0$ uniformly?

The problem is that $|f_n(x)|$ takes a maximum value of $\frac{1}{2}$ at

$$x = \pm \sqrt{\frac{1}{n}}$$
 for all n .

However, if we remove any open interval around x = 0, eventually $x = \pm \sqrt{\frac{1}{n}}$ will move into that open interval.

Claim: $f_n(x) \to f(x) = 0$ uniformly on any set of the form $\{x \le -a\} \cup \{x \ge a\}, a > 0$ (i.e. for $|x| \ge a$). Note: we could also use $\{x \le -a\} \cup \{x \ge b\}, a, b > 0$.

We must show that given any $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if $n \ge N$ and $|x| \ge a > 0$ then $\left| \frac{\sqrt{nx}}{1+nx^2} - 0 \right| < \epsilon$.

$$\left|\frac{\sqrt{n}x}{1+nx^2} - 0\right| = \left|\frac{\sqrt{n}x}{1+nx^2}\right| = \frac{|x|\sqrt{n}}{|x|(\frac{1}{|x|}+n|x|)} = \frac{\sqrt{n}}{(\frac{1}{|x|}+n|x|)}$$
$$< \frac{\sqrt{n}}{na} = \frac{1}{a\sqrt{n}} < \epsilon$$
$$a\sqrt{n} > \frac{1}{\epsilon}$$
$$\sqrt{n} > \frac{1}{a\epsilon}$$
$$n > \frac{1}{a^2\epsilon^2}.$$

So if we choose $N > \frac{1}{a^2 \epsilon^2}$ (notice that N is independent of x) we get:

 $n \ge N > \frac{1}{a^2 \epsilon^2}$ $\sqrt{n} > \frac{1}{a\epsilon}$ $a\sqrt{n} > \frac{1}{\epsilon}$ $\frac{\sqrt{n}}{na} = \frac{1}{a\sqrt{n}} < \epsilon.$

So we have:

$$\left|\frac{\sqrt{n}x}{1+nx^2} - 0\right| = \left|\frac{\sqrt{n}x}{1+nx^2}\right| = \frac{|x|\sqrt{n}}{|x|(\frac{1}{|x|}+n|x|)} = \frac{\sqrt{n}}{(\frac{1}{|x|}+n|x|)} < \frac{\sqrt{n}}{na} < \epsilon.$$

Thus $f_n(x) \to f(x) = 0$ uniformly on any set of the form $\{x \le -a\} \cup \{x \ge a\}, a > 0$ (i.e. for $|x| \ge a$).

A second way to see that $f_n(x) \to f(x) = 0$ uniformly on any set of the form $S = \{x \le -a\} \cup \{x \ge a\}, a > 0$, is to show that $\lim_{n \to \infty} \sup_{x \in S} |f_n(x) - 0| = 0$.

Since
$$f'_n(x) = \sqrt{n}(\frac{1-nx^2}{(1+nx^2)^2}) = 0$$
 at $x = \pm \sqrt{\frac{1}{n}}$ we have:

sign of
$$f'_n(x)$$
 _____ + ____ |____ - ___ .
 $-\sqrt{\frac{1}{n}}$ $\sqrt{\frac{1}{n}}$

Given any positive number a > 0, for n sufficiently large, $-a < -\sqrt{\frac{1}{n}} < \sqrt{\frac{1}{n}} < a$.

For these values of n, on the set S, the absolute maximum of $f_n(x)$ occurs at x = a since $f'_n(x) < 0$ and $f_n(x) > 0$ for x > a, and the absolute minimum of $f_n(x)$ occurs at x = -a since $f'_n(x) < 0$ and $f_n(x) < 0$ for x < -a.

Now notice that:

$$\sup_{x \in S} f_n(x) = f_n(a) = \frac{\sqrt{na}}{1 + na^2}$$
$$\inf_{x \in S} f_n(x) = f_n(-a) = -\frac{\sqrt{na}}{1 + na^2}.$$

Thus we have:

$$\sup_{x\in S}|f_n(x)|=\frac{\sqrt{n}a}{1+na^2}.$$

Now we can say:

$$0 \le \sup_{x \in S} |f_n(x)| = \frac{\sqrt{na}}{1 + na^2} \le \frac{\sqrt{na}}{na^2} = \frac{1}{\sqrt{na}}.$$

Thus we have by the squeeze theorem:

$$\lim_{n\to\infty}\sup_{x\in S}|f_n(x)-0|=0.$$

Theorem: If $f_n(x)$ converges to f(x) uniformly on an interval $I \subseteq \mathbb{R}$, and $f_n(x)$ is continuous on I for all n, then f(x) is continuous on I.

Proof: we must show that given any point $a \in I$, that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f(x) - f(a)| < \epsilon$ (here the δ can depend on the point "a").

Let's start by choosing any point $a \in I$, and fixing any $\epsilon > 0$.

By the triangle inequality we know:

$$|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f(a)|$$

Using the triangle inequality again, but on the 2^{nd} term on the RHS we get:

$$|f_n(x) - f(a)| \le |f_n(x) - f_n(a)| + |f_n(a) - f(a)|$$

Putting these 2 triangle inequalities together we get:

$$|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|.$$

Now let's show that each one of the terms on the RHS can be made less than $\frac{\epsilon}{3}$.

Since $f_n(x)$ converges to f(x) uniformly we know there exists a $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ for any $x \in I$.

Thus the first and the third terms on the RHS can be made less than $\frac{\epsilon}{3}$ by choosing any $n \ge N$, using N in the statement above.

Since $f_n(x)$ is continuous on I we know that given any $\frac{\epsilon}{3} > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f_n(x) - f_n(a)| < \frac{\epsilon}{3}$.

Using this δ we have:

$$\begin{aligned} |f(x) - f(a)| &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \end{aligned}$$

Thus f(x) is continuous on *I*.