Uniform Convergence- HW Problems

1. Let $\{f_n\}, \{g_n\}$ be real-valued function on an interval $I \subseteq \mathbb{R}$ such that $\{f_n\}$ converges uniformly to f and $\{g_n\}$ converges uniformly to g on I. Prove that $\{f + g\}$ converges uniformly to f + g on I.

For problems 2-8 find the pointwise limit of the sequence and prove on which interval(s) the sequence converges uniformly.

2. $f_n(x) = \sqrt[n]{x}$ on [0,1]3. $f_n(x) = \frac{1}{1+nx}$ on $[0,\infty)$ 4. $f_n(x) = \frac{nx}{1+n^2x^2}$ on $[0,\infty)$ 5. $f_n(x) = \frac{\cos(e^n x)}{n}$ on $(-\infty,\infty)$ 6. $f_n(x) = \frac{x^2}{x^2 + (1-nx)^2}$ on [0,1]7. $f_n(x) = nxe^{-nx}$ on $[0,\infty)$ 8. $f_n(x) = \frac{1}{1+x^{2n}}$ on $(-\infty,\infty)$. 9. Let C[-1,1] be the metric space of continuous real-valued functions on [-1,1] with the metric $d(f,g) = \int_{-1}^{1} |f(x) - g(x)| dx$.

Let a sequence of functions in C[-1,1] be given by

$$= 1 \qquad \text{if} \quad \frac{1}{n} < x \le 1$$
$$f_n(x) = \frac{n}{2}x + \frac{1}{2} \quad \text{if} \quad -\frac{1}{n} \le x \le \frac{1}{n}$$
$$= 0 \qquad \text{if} \quad -1 \le x < -\frac{1}{n}$$

(It may help to sketch the graphs of a few of these functions).

- a. Find the pointwise limit of this sequence of functions (ie $\lim_{n \to \infty} f_n(x)$).
- b. Show that $\{f_n\}$ is a Cauchy sequence in C[-1,1] with this metric.
- c. Does $\{f_n\}$ converge uniformly to its pointwise limit? Explain.

10. Let
$$f_n(x) = 2nx$$
 if $0 \le x \le \frac{1}{n}$
 $= \frac{2n(1-x)}{n-1}$ if $\frac{1}{n} < x \le 1$.

a. Find the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$.

b. Does f_n converges to f uniformly on [0,1]?

11. Let
$$f_n(x) = \frac{nx}{1+nx}$$
 on [0,∞).

- a. Find the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$.
- b. Show that $f_n(x)$ does not converge uniformly to f(x) on $(0, \infty)$.