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                                                Complete Metric Spaces 

 

Def.  A metric space 𝑀 is said to be complete if every Cauchy sequence in 𝑀 

converges to a point in 𝑀. 

 

Ex.  ℝ𝑛 is complete with the standard metric 

 

Ex.  (0,1) is not complete with the standard metric. 

       ℚ is not complete with the standard metric. 

 

Theorem:  Let 𝑀, 𝑑 be a complete metric space and 𝐴 ⊆ 𝑀 a subset of 𝑀.  Then 

𝐴, 𝑑 is a complete metric space if and only if 𝐴 is closed in 𝑀. 

 

Proof.  Assume that 𝐴, 𝑑 is complete and let 𝑥 ∈ 𝑀 be any limit point of 𝐴. 

Let {𝑥𝑛} be a sequence in 𝐴 that converges to 𝑥 ∈ 𝑀. 

 

Since {𝑥𝑛} converges it is a Cauchy sequence in 𝐴. 

𝐴 is complete so 𝑥 ∈ 𝐴. 

Hence 𝐴 is closed.  

 

Now let’s assume that 𝐴 is closed in 𝑀 and show 

that 𝐴 is complete. 

Let {𝑥𝑛} be a Cauchy sequence in 𝐴. 

Then {𝑥𝑛} is also a Cauchy sequence in 𝑀, and hence 𝑥𝑛 → 𝑥 ∈ 𝑀, since 𝑀 is 

complete. 

But 𝐴 is closed so 𝑥 ∈ 𝐴, and 𝐴 is complete. 

𝐴 

𝑀 

{𝑥𝑛} 
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Ex. [0,1],  [0, ∞),  ℤ, and [1,5] ∪ {16} are all complete metric spaces with the 

standard metric on ℝ. 

 

Notice that if 𝑀 is complete and totally bounded then every totally bounded 

sequence in 𝑀 has a convergent subsequence. 

In particular, any closed, bounded subset of ℝ (i.e. compact subsets of ℝ) is both 

complete and totally bounded.  Thus, for example, every sequence in [𝑎, 𝑏] has a 

convergent subsequence. 

 

How you measure distances can determine whether a metric space is complete.  

For example, you can have two metric spaces with the same underlying points but 

one is complete and the other isn’t. 

 

Ex.    Let 𝑀1 = [1, ∞)  with 𝑑1(𝑥, 𝑦) = |𝑥 − 𝑦| 

                𝑀2 = [1, ∞)  with 𝑑2(𝑥, 𝑦) = |
1

𝑥
−

1

𝑦
| .    

The sequence {1,2,3,4, … } is a Cauchy sequence in 𝑀2 (but not in 𝑀1), but doesn’t 

converge in 𝑀2. 

Thus 𝑀1 is a complete metric space (a closed subset of ℝ with the standard 

metric), but 𝑀2 is not complete because it has a Cauchy sequence that does not 

converge in 𝑀2. 
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Ex.  Prove if 𝑀 is complete then every sequence {𝑥𝑛} in 𝑀 satisfying 

𝑑(𝑥𝑛 , 𝑥𝑛+1) < 2−𝑛 , for all 𝑛, converges to a point in 𝑀. 

 

Since 𝑀 is complete, we just need to show that {𝑥𝑛} is Cauchy.  

So we must show that given any 𝜖 > 0, there exist an 𝑁 ∈ ℤ+ such that if 

 𝑚, 𝑛 ≥ 𝑁, then 𝑑(𝑥𝑛 , 𝑥𝑚) < 𝜖. 

Assume 𝑚 > 𝑛: 

𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + ⋯ + 𝑑(𝑥𝑚−1, 𝑥𝑚) 

                            < 2−𝑛 + 2−(𝑛+1) + ⋯ + 2−(𝑚−1) 

                            ≤ ∑ 2−𝑖 = 2−𝑛 (1 +
1

2
+

1

4
+ ⋯ ) = 2−𝑛+1∞

𝑖=𝑛 . 

So if we can force 2−𝑛+1 < 𝜖 we’ll almost be done. 

                                2−𝑛+1 < 𝜖 

                                  2𝑛−1 >
1

𝜖
 

                  (𝑛 − 1) ln(2) > ln (
1

𝜖
) = − ln(𝜖) 

                                𝑛 − 1 >
− ln(𝜖)

ln(2)
    

                                         𝑛 >
− ln(𝜖)

ln(2)
+ 1 

 

Note: If 𝜖 > 2 the RHS will be negative, so we 

Choose 𝑁 > max (
− ln(𝜖)

ln(2)
+ 1, 0). 

 

 

Now let’s show that this 𝑁 “works”. 
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If 𝑛 ≥ 𝑁 > max (
− ln(𝜖)

ln(2)
+ 1, 0) 

                          𝑛 >
− ln(𝜖)

ln(2)
+ 1 

                   𝑛 − 1 >
− ln(𝜖)

ln(2)
 

      (𝑛 − 1) ln(2) > − ln(𝜖) = ln (
1

𝜖
) 

           ln(2(𝑛−1)) > ln (
1

𝜖
)   

                  2(𝑛−1) >
1

𝜖
 

                   2−𝑛+1 < 𝜖. 

So if 𝑁 > max (
− ln(𝜖)

ln(2)
+ 1, 0), then 𝑑(𝑥𝑛, 𝑥𝑚) ≤ 2−𝑛+1 < 𝜖. 

Thus {𝑥𝑛} is a Cauchy sequence. 

 

Ex.  It can be shown that if {𝑥𝑛} and {𝑦𝑛} are Cauchy sequences in a metric space 

       𝑀, 𝑑, then {𝑑(𝑥𝑛 , 𝑦𝑛)} is a Cauchy sequence in ℝ (this is a good exercise).  Is 

       the converse true?  That is, if {𝑥𝑛} and {𝑦𝑛} are sequences in a metric space 

       𝑀, 𝑑, and {𝑑(𝑥𝑛 , 𝑦𝑛)} is a Cauchy sequence in ℝ then {𝑥𝑛} and {𝑦𝑛} are 

       Cauchy sequences. 

 

       This is false!!  As a counterexample, Let {𝑥𝑛} and {𝑦𝑛} both be the sequence in 

       ℝ, 𝑑 (where 𝑑 is the standard metric) given by {1, 2, 3, … }.  Then {𝑑(𝑥𝑛 , 𝑦𝑛)} 

        is a sequence where all elements are 0, hence clearly a Cauchy sequence, but 

       {1, 2, 3, … } is not a Cauchy sequence. 

 

 

 



5 
 

Theorem:  For any metric space 𝑀, 𝑑 the following statements are equivalent: 

i. 𝑀, 𝑑 is complete. 

ii. If 𝐸1 ⊇ 𝐸2 ⊇ ⋯ ⊇ 𝐸𝑛 ⊇ ⋯  is a decreasing sequence of nonempty 

closed sets in 𝑀 with 𝑑𝑖𝑎𝑚(𝐸𝑛) → 0, then ⋂ 𝐸𝑛 ≠ ∅∞
𝑛=1  (in fact, it 

contains exactly one point). 

iii. (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded 

subset of 𝑀 has a limit point in 𝑀. 

 

Ex.  We need the 𝐸𝑛′𝑠 in ii to be closed and 𝑑𝑖𝑎𝑚(𝐸𝑛) → 0.  For example: 

             Let    𝐸𝑛 = (0,
1

𝑛
),   then  ⋂ 𝐸𝑛 = ∅∞

𝑛=1   (here 𝐸𝑛 is not closed) 

             or let 𝐸𝑛 = [𝑛, ∞), then  ⋂ 𝐸𝑛 = ∅∞
𝑛=1   (here 𝑑𝑖𝑎𝑚(𝐸𝑛) ↛ 0). 

 

Let 𝑉 be a vector space. 

Def.  A norm ‖∙‖ on 𝑉 is a map from 𝑉 → ℝ, such that for all 𝑣, 𝑤 ∈ 𝑉 

a. ‖𝑣‖ ≥ 0, and ‖𝑣‖ = 0  if and only if 𝑣 = 0. 

b. ‖𝜆𝑣‖ = |𝜆|‖𝑣‖,  for any 𝜆 ∈ ℝ. 

c. ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖ 

We can always define a metric on a vector space 𝑉 from a norm by: 

                                 𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖. 

 

Def.  A linear space (i.e. a vector space) that is complete with respect to the 

distance defined by the norm is called a Banach space. 

 

Ex.  ℝ𝑛 is a Banach space with  ‖𝑣‖ = √𝑥1
2 + ⋯ + 𝑥𝑛

2 ; where                            

       𝑣 =< 𝑥1, … , 𝑥𝑛 >. 


