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                           Uniform Convergence of Fourier Series 

 

Up to now, we have talked mostly about 𝐿2-convergence of Fourier series.      

When does 𝑆𝑛(𝑓) converge uniformly to 𝑓? 

 

Before we answer this question we need another form of the Cauchy-Schwarz 

inequality. To do this we first want to consider the set of all real sequences,         

𝑥 = {𝑥𝑛}, such that ∑ |𝑥𝑛|𝑝∞
𝑛=1 < ∞ for 1 ≤ 𝑝 < ∞. We call this set 𝓵𝒑. 

 

In fact, ℓ𝑝 is a vector space under coordinatewise addition and we can define a 

norm on this vector space by: 

 

                    ‖𝑥‖𝑝 = (∑ |𝑥𝑛|𝑝∞
𝑛=1 )

1

𝑝      where 𝑥 is a sequence in ℓ𝑝 

 

 

To prove uniform convergence of a Fourier series to a function 𝑓(𝑥) under the 

appropriate conditions we will need the following form of the Cauchy-Schwarz 

inequality for ℓ2. 

 

 Cauchy-Schwarz inequality:       ∑ |𝑥𝑖𝑦𝑖| ≤  ‖𝑥‖2‖𝑦‖2
∞
𝑖=1  

 

 𝑥, 𝑦 ∈ ℓ2 (Note: ∑ 𝑥𝑖𝑦𝑖
∞
𝑖=1  is a dot product for ℓ2) 
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Proof:   

Let’s write  < 𝑥, 𝑦 > = ∑ 𝑥𝑖𝑦𝑖
∞
𝑖=1 .   

Then  < 𝑥, 𝑥 > = ∑ 𝑥𝑖
2∞

𝑖=1 = ‖𝑥‖2
2. 

If 𝑡 ∈ ℝ, then: 

          0 ≤ ‖𝑥 + 𝑡𝑦‖2
2 = < 𝑥 + 𝑡𝑦, 𝑥 + 𝑡𝑦 > 

                 = < 𝑥, 𝑥 > +2𝑡 < 𝑥, 𝑦 > +𝑡2 < 𝑦, 𝑦 > 

      = ‖𝑥‖2
2 + 2𝑡 < 𝑥, 𝑦 > +𝑡2‖𝑦‖2

2.  

 

This is a quadratic in 𝑡 that’s nonnegative so:  

𝐴𝑡2 + 𝐵𝑡 + 𝐶 ≥ 0 

          𝐵2 − 4𝐴𝐶 ≤ 0. 

 Or in ths case, 

         (2 < 𝑥, 𝑦 >)2 − 4‖𝑥‖2
2‖𝑦‖2

2 ≤ 0 

                                            < 𝑥, 𝑦 >2≤ ‖𝑥‖2
2‖𝑦‖2

2 

                                            |< 𝑥, 𝑦 >| ≤ ‖𝑥‖2‖𝑦‖2 

                        |∑ 𝑥𝑖𝑦𝑖
∞
𝑖=1 | ≤ (∑ 𝑥𝑖

2∞
𝑖=1 )

1

2(∑ (𝑦𝑖)
2∞

𝑖=1 )
1

2  .  

 

The same holds for: 

𝑥 = (|𝑥1|, |𝑥2|, |𝑥3|, … ) 

                                            𝑦 = (|𝑦1|, |𝑦2|, |𝑦3|, … ),   so 

∑ |𝑥𝑖||𝑦𝑖|
∞
𝑖=1 ≤ (∑ 𝑥𝑖

2∞
𝑖=1 )

1

2(∑ 𝑦𝑖
2∞

𝑖=1 )
1

2  

    ∑ |𝑥𝑖𝑦𝑖|
∞
𝑖=1 ≤ (∑ 𝑥𝑖

2∞
𝑖=1 )

1

2(∑ 𝑦𝑖
2∞

𝑖=1 )
1

2 . 
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Theorem:   Let 𝑓 be a continuous function on [−𝜋, 𝜋] with  

𝑓(−𝜋) = 𝑓(𝜋) 

 and suppose 𝑓 has a bounded, piecewise continuous derivative on 

         [−𝜋, 𝜋]. Then the Fourier series for 𝑓 converges uniformly to 𝑓 on [−𝜋, 𝜋]. 

 

Proof: Since 𝑓′(𝑥) is piecewise continuous, we can use integration by      

parts to compare the Fourier coefficients of 𝑓′(𝑥) with those of 𝑓(𝑥). 

𝑓′(𝑥) =
𝑎0′

2
+ ∑ (𝑎𝑘

′ cos 𝑘𝑥 + 𝑏𝑘
′ sin 𝑘𝑥)∞

𝑘=1     

𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)∞

𝑘=1     

 For 𝑘 ≥ 1 we have: 

                    𝑎𝑘
′ =

1

𝜋
∫ 𝑓′(𝑥) cos 𝑘𝑥

𝜋

−𝜋
 𝑑𝑥      

         Let       𝑢 = cos 𝑘𝑥                         𝑣 = 𝑓(𝑥) 

                           𝑑𝑢 = −𝑘 sin 𝑘𝑥  𝑑𝑥         𝑑𝑣 = 𝑓′(𝑥) 𝑑𝑥 

 

𝑎𝑘
′ =

1

𝜋
[(cos 𝑘𝑥) 𝑓(𝑥)|−𝜋

𝜋 + 𝑘 ∫ (sin 𝑘𝑥) 𝑓(𝑥)𝑑𝑥
𝜋

−𝜋
]  

=
1

𝜋
[(cos 𝑘𝜋) 𝑓(𝜋) − cos(−𝑘𝜋) 𝑓(−𝜋) + 𝑘 ∫ (sin 𝑘𝑥) 𝑓(𝑥)𝑑𝑥]

𝜋

−𝜋
  

𝑓(−𝜋) = 𝑓(𝜋) and cos(−𝑘𝜋) = cos 𝑘𝜋, so 

𝑎𝑘
′ =

𝑘

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥  𝑑𝑥 =

𝜋

−𝜋
𝑘𝑏𝑘 .   

 

 

 

𝑎0
′ =

1

𝜋
∫ 𝑓′(𝑥)𝑑𝑥 =

𝜋

−𝜋

1

𝜋
(𝑓(𝜋) − 𝑓(−𝜋)) = 0.   
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Similarly:        

                 𝑏𝑘
′ =

1

𝜋
∫ 𝑓′(𝑥) sin 𝑘𝑥

𝜋

−𝜋
 𝑑𝑥  

        Let  𝑢 = sin 𝑘𝑥                        𝑣 = 𝑓(𝑥) 

                      𝑑𝑢 = 𝑘 cos 𝑘𝑥  𝑑𝑥         𝑑𝑣 = 𝑓′(𝑥) 𝑑𝑥 

 

𝑏𝑘
′ =

1

𝜋
[(sin 𝑘𝑥) 𝑓(𝑥)|−𝜋

𝜋 − 𝑘 ∫  𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥
𝜋

−𝜋
]  

                           = −
𝑘

𝜋
∫  𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥

𝜋

−𝜋
= −𝑘𝑎𝑘  

 

We know if 𝑔 ∈ 𝑅[−𝜋, 𝜋], then by Parseval’s identity: 

𝑐0
2

2
+ ∑ (𝑐𝑘

2 + 𝑑𝑘
2)∞

𝑘=1 =
1

𝜋
∫  (𝑔(𝑥))

2
𝑑𝑥

𝜋

−𝜋
< ∞   

 

where 𝑐𝑘 , 𝑑𝑘  are the Fourier coefficients for 𝑔. So we can write: 

∑ (𝑎𝑘
′ )2 =∞

𝑘=1 ∑ 𝑘2𝑏𝑘
2∞

𝑘=1 < ∞  

and 

      ∑ (𝑏𝑘
′ )2 =∞

𝑘=1 ∑ 𝑘2𝑎𝑘
2∞

𝑘=1 < ∞  . 

 

Now we have: 

∑ |𝑎𝑘| =∞
𝑘=1  ∑ [(𝑘|𝑎𝑘|) ∙

1

𝑘
] ≤∞

𝑘=1 (∑ 𝑘2𝑎𝑘
2∞

𝑘=1 )
1

2 (∑
1

𝑘2
∞
𝑘=1 )

1

2
  < ∞ 

by the Cauchy-Schwarz inequality. 
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Similarly, 

∑ |𝑏𝑘| =∞
𝑘=1  ∑ [(𝑘|𝑏𝑘|) ∙

1

𝑘
] ≤∞

𝑘=1 (∑ 𝑘2𝑏𝑘
2∞

𝑘=1 )
1

2 (∑
1

𝑘2
∞
𝑘=1 )

1

2
  < ∞ . 

 

We also know: 

|𝑎𝑘 cos 𝑘𝑥| ≤ |𝑎𝑘| 

  |𝑏𝑘 sin 𝑘𝑥| ≤ |𝑏𝑘|. 

 

Thus, |𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥| ≤ |𝑎𝑘| + |𝑏𝑘| = 𝑀𝑘  for all 𝑥 ∈ [−𝜋, 𝜋]. 

 

So by the Weierstrass 𝑀-test, since:  

∑ (|𝑎𝑘| + |𝑏𝑘|) < ∞∞
𝑘=1   

 

∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)∞
𝑘=1  converges uniformly on [−𝜋, 𝜋]. 

 

Hence 
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)∞

𝑘=1  converges uniformly on [−𝜋, 𝜋]. 

 

Thus, 𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)∞

𝑘=1  for 𝑥 ∈ [−𝜋, 𝜋]     

 

(i.e. the Fourier series converges uniformly on [−𝜋, 𝜋] and hence pointwise on 

[−𝜋, 𝜋]). 
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Theorem: Termwise Differentiation of Fourier Series 

 Suppose 𝑓 and 𝑓′ are continuous on [−𝜋, 𝜋] with 𝑓(−𝜋) = 𝑓(𝜋) and 

𝑓′(−𝜋) = 𝑓′(𝜋) and suppose that 𝑓′ has a piecewise continuous derivative on 

[−𝜋, 𝜋]. Then the Fourier series for 𝑓′ is 

 

𝑓′(𝑥) = ∑ (−𝑘𝑎𝑘 sin 𝑘𝑥 + 𝑘𝑏𝑘 cos 𝑘𝑥)∞
𝑘=1   

 

 This is the termwise differentiation of the Fourier series of 𝑓. 

 

Proof: We know from the previous theorem that the Fourier series of 𝑓′(𝑥) 

converges uniformly to 𝑓′(𝑥) on [−𝜋, 𝜋]. We just need to show that the Fourier 

coefficients of 𝑓′(𝑥) are −𝑘𝑎𝑘  and 𝑘𝑏𝑘. 

 

 If 𝑓′(𝑥) =
𝑐0

2
+ ∑ (𝑐𝑘 cos 𝑘𝑥∞

𝑘=1 + 𝑑𝑘 sin 𝑘𝑥) 

 then,  𝑐0 =
1

𝜋
∫ 𝑓′(𝑥) 𝑑𝑥

𝜋

−𝜋
=

1

𝜋
(𝑓(𝜋) − 𝑓(−𝜋)) = 0 

   𝑐𝑘 =
1

𝜋
∫ 𝑓′(𝑥) cos 𝑘𝑥  𝑑𝑥.

𝜋

−𝜋
 

 

 As we saw in the previous proof by integrating by parts we get: 

 

  𝑐𝑘 = 𝑘𝑏𝑘  and 𝑑𝑘 =
1

𝜋
∫ 𝑓′(𝑥) sin 𝑘𝑥 𝑑𝑥

𝜋

−𝜋
= −𝑘𝑎𝑘  

 which is exactly what we get from term by term differentiation of the   

           Fourier series for 𝑓(𝑥).  
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Ex.  Solve the differential equation 𝑥′′(𝑡) + 4𝑥(𝑡) = 𝐹(𝑡), where 

        𝐹(𝑡) = 
𝜋

2
−

4

𝜋
∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2
∞
𝑘=1  

      (𝐹(𝑡) is the Fourier series for 𝐹(𝑡) = |𝑡|, −𝜋 ≤ 𝑡 ≤ 𝜋, and                           

       𝐹(𝑡 + 2𝑛𝜋) = 𝐹(𝑡)). 

 

 To solve this differential equation we first solve the homogeneous 

 equation: 𝑥′′ + 4𝑥 = 0. 

 

 The general solution to the homogeneous equation is: 

𝑥ℎ(𝑡) = 𝐴 cos 2𝑡 + 𝐵𝑠𝑖𝑛2𝑡,    𝐴, 𝐵 ∈ ℝ. 

 

          The general solution to 𝑥′′(𝑡) + 4𝑥(𝑡) = 𝐹(𝑡) is given by: 

                                           𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡) 

           where 𝑥𝑝(𝑡) is a particular solution for 𝑥′′(𝑡) + 4𝑥(𝑡) = 𝐹(𝑡). 

 

 To find a particular solution for: 

𝑥′′(𝑡) + 4𝑥(𝑡) = 
𝜋

2
−

4

𝜋
∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2
∞
𝑘=1   

 we take:      

𝑥𝑝(𝑡) =
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑡 + 𝑏𝑘 sin 𝑘𝑡)∞

𝑘=1   

 and take its derivatives and substitute into the differential equation above. 

                        𝑥𝑝′(𝑡) =  ∑ (−𝑘𝑎𝑘 sin 𝑘𝑡 + 𝑘𝑏𝑘 cos 𝑘𝑡)∞
𝑘=1   

                       𝑥𝑝′′(𝑡) =  ∑ (−𝑘2𝑎𝑘 cos 𝑘𝑡 − 𝑘2𝑏𝑘 sin 𝑘𝑡)∞
𝑘=1   
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∑ (−𝑘2𝑎𝑘 cos 𝑘𝑡 − 𝑘2𝑏𝑘 sin 𝑘𝑡)∞
𝑘=1 +  

4 (
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑡 + 𝑏𝑘 sin 𝑘𝑡)∞

𝑘=1 ) = 
𝜋

2
−

4

𝜋
 ∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2
∞
𝑘=1  

 

   
4𝑎0

2
+ ∑ (𝑎𝑘(4 − 𝑘2) cos 𝑘𝑡 + 𝑏𝑘(4 − 𝑘2) sin 𝑘𝑡)∞

𝑘=1                                                         

                                                                     =
𝜋

2
−

4

𝜋
 ∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2
∞
𝑘=1 . 

 

 So  
4𝑎0

2
=

𝜋

2
  and  𝑎0 =

𝜋

4
 ,       𝑏𝑘 = 0 for all 𝑘 and 𝑎2𝑘 = 0 for all 𝑘. 

 

     𝑎2𝑘−1(4 − (2𝑘 − 1)2) = −
4

𝜋
 (

1

(2𝑘−1)2) 

 

                                    𝑎2𝑘−1 = −
4

𝜋
[

1

(2𝑘−1)2[4−(2𝑘−1)2]
] 

  

                                       𝑥𝑝(𝑡) = 
𝜋

8
−

4

𝜋
∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2[4−(2𝑘−1)2]
∞
𝑘=1  

 

So the general solution to 𝑥′′(𝑡) + 4𝑥(𝑡) = 
𝜋

2
−

4

𝜋
∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2
∞
𝑘=1   is: 

 

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡) 

          = 𝐴 cos 2𝑡 + 𝐵 sin 2𝑡 + 
𝜋

8
−

4

𝜋
∑

cos[(2𝑘−1)𝑡]

(2𝑘−1)2[4−(2𝑘−1)2]
∞
𝑘=1  . 


