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            Fourier Series: The 𝐿2 Norm and Calculating Fourier Series 

 

The Fourier series for a 2𝜋-periodic function, 𝑓, which is bounded and Riemann 

integrable on [−𝜋, 𝜋] is given by: 

𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)∞

𝑘=1     

where the Fourier coefficients are given by: 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑡) cos 𝑘𝑡 𝑑𝑡

𝜋

−𝜋
  

  𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑡) sin 𝑘𝑡 𝑑𝑡

𝜋

−𝜋
 . 

Note that: 

|𝑎𝑘| ≤
1

𝜋
∫ |𝑓(𝑡) cos 𝑘𝑡|

𝜋

−𝜋
𝑑𝑡 ≤

1

𝜋
∫ |𝑓(𝑡)|𝑑𝑡

𝜋

−𝜋
  

 |𝑏𝑘| ≤
1

𝜋
∫ |𝑓(𝑡) sin 𝑘𝑡|

𝜋

−𝜋
𝑑𝑡 ≤

1

𝜋
∫ |𝑓(𝑡)|𝑑𝑡.

𝜋

−𝜋
  

Since 𝑓 is bounded: 

1

𝜋
∫ |𝑓(𝑡)|𝑑𝑡

𝜋

−𝜋
≤

1

𝜋
∫ ‖𝑓‖∞𝑑𝑡

𝜋

−𝜋
=

1

𝜋
(2𝜋)‖𝑓‖∞ = 2‖𝑓‖∞  

Thus, 

|𝑎𝑘| ≤ 2‖𝑓‖∞ 

 |𝑏𝑘| ≤ 2‖𝑓‖∞. 

 

We will denote the partial sums of a Fourier series by: 

𝑆𝑛(𝑓)(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥).𝑛

𝑘=1   

Notice 𝑆𝑛(𝑓) is a trig polynomial of degree at most 𝑛, or 𝑆𝑛(𝑓) ∈ 𝑇𝑛. 

We will be interested in what sense 𝑆𝑛(𝑓) converges to 𝑓 (Pointwise? Uniformly? 

In 𝐿2?) 
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Recall that the functions: 1, cos 𝑥 , sin 𝑥 , cos 2𝑥 , sin 2𝑥 , … are orthogonal 

with respect to the inner product: 

< 𝑓, 𝑔 > =  ∫ 𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥
𝜋

−𝜋
  

since     ∫ (cos 𝑚𝑥)(cos 𝑛𝑥)  𝑑𝑥
𝜋

−𝜋
= ∫ (sin 𝑚𝑥)(sin 𝑛𝑥)  𝑑𝑥

𝜋

−𝜋
  

                                           = ∫ cos 𝑚𝑥 sin 𝑛𝑥
𝜋

−𝜋
𝑑𝑥 = 0  

for 𝑚 ≠ 𝑛 (the last integral is 0 for 𝑚 = 𝑛 as well).  

 

Also,                ∫ cos2 𝑚𝑥
𝜋

−𝜋
𝑑𝑥 = ∫ sin2 𝑚𝑥

𝜋

−𝜋
𝑑𝑥 = 𝜋 , for 𝑚 ≠ 0,  

                                      ∫ 1
𝜋

−𝜋
𝑑𝑥 = 2𝜋.  

 

There is nothing special about the interval [−𝜋, 𝜋]. If we have a periodic function 

of period 2𝐿 instead of 2𝜋 then the Fourier series for 𝑓 becomes: 

𝑎0

2
+ ∑ (𝑎𝑘 cos

𝑘𝜋𝑥

𝐿
+ 𝑏𝑘 sin

𝑘𝜋𝑥

𝐿
)∞

𝑘=1   

 where:  

𝑎𝑘 =
1

𝐿
∫ 𝑓(𝑥) cos

𝑘𝜋𝑥

𝐿
 𝑑𝑥

𝐿

−𝐿
  

 𝑏𝑘 =
1

𝐿
∫ 𝑓(𝑥) sin

𝑘𝜋𝑥

𝐿
 𝑑𝑥

𝐿

−𝐿
.  

 

 Notice if 𝐿 = 𝜋 we get our original formulas. In fact, sometimes it’s easier 

to express a function, 𝑓, of a period 2𝐿 by giving a formula for 𝑓 on an interval 

[𝑐, 𝑐 + 2𝐿]. In that case, the formula for the series stays the same, but the 

formulas for the coefficients become: 

         𝑎𝑘 =
1

𝐿
∫ 𝑓(𝑥) cos

𝑘𝜋𝑥

𝐿
 𝑑𝑥

𝑐+2𝐿

𝑐
  

           𝑏𝑘 =
1

𝐿
∫ 𝑓(𝑥) sin

𝑘𝜋𝑥

𝐿
 𝑑𝑥.

𝑐+2𝐿

𝑐
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For example, in one of your homework problems 𝑓(𝑥) is 2𝜋 periodic (so 𝐿 = 𝜋) 

but it’s given on the interval [0, 2𝜋]instead of [−𝜋, 𝜋]. Thus you can use the 

above formulas with 𝑐 = 0 and 𝐿 = 𝜋.  

 

Ex.  Let 𝑓(𝑥) = |𝑥| for −𝜋 ≤ 𝑥 ≤ 𝜋 and extend 𝑓 to a 2𝜋 periodic function on ℝ. 

Find the Fourier series for 𝑓. 

 

 

 

 

 

 The Fourier series has the form: 

 

𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)𝑛

𝑘=1   

 

 where: 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥

𝜋

−𝜋
  

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑘𝑥 𝑑𝑥

𝜋

−𝜋
  

 

 Notice that 𝑓(𝑥) is an even function (i.e., 𝑓(−𝑥) = 𝑓(𝑥)), and thus 

          𝑓(𝑥) sin 𝑘𝑥 is an odd function.  Therefore, all of the 𝑏𝑘s are 0, since: 

∫ 𝑔(𝑥)𝑑𝑥
𝐴

−𝐴
= 0  

if 𝑔(𝑥) is an odd function.  
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𝑎𝑘 =
1

𝜋
∫ |𝑥| cos 𝑘𝑥 𝑑𝑥

𝜋

−𝜋
 ;  |𝑥| cos 𝑘𝑥 is an even function and:  

∫ 𝑔(𝑥)𝑑𝑥
𝐴

−𝐴
= 2 ∫ 𝑔(𝑥)𝑑𝑥

𝐴

0
 if 𝑔(𝑥) is even.   

 

           𝑎𝑘 =
2

𝜋
∫ |𝑥| cos 𝑘𝑥 𝑑𝑥

𝜋

0
=

2

𝜋
∫ 𝑥 cos 𝑘𝑥 𝑑𝑥

𝜋

0
     

 

  now integrate by parts (if 𝑘 ≠ 0): 

                                            𝑢 = 𝑥               𝑣 =
1

𝑘
sin 𝑘𝑥  

                                          𝑑𝑢 = 𝑑𝑥          𝑑𝑣 = cos 𝑘𝑥   

 

𝑎𝑘 =
2

𝜋
∫ 𝑥 cos 𝑘𝑥 𝑑𝑥

𝜋

0
=

2

𝜋
[

𝑥

𝑘
sin 𝑘𝑥 |0

𝜋 −
1

𝑘
∫ sin 𝑘𝑥 𝑑𝑥

𝜋

0
]  

                    =
2

𝜋
[(0 − 0) −

1

𝑘
(−

1

𝑘
cos 𝑘𝑥 |0

𝜋)]  

                    =
2

𝜋
[

1

𝑘2
(cos 𝑘𝜋 − cos 0)]   

                     =
2

𝜋
[

1

𝑘2 ((−1) − 1)] = −
4

𝜋𝑘2              if 𝑘 is odd  

                      = 0                                                          if 𝑘 is even (𝑘 ≠ 0). 

 

  If 𝑘 = 0:             𝑎0 =
2

𝜋
∫ 𝑥 𝑑𝑥

𝜋

0
= 

2

𝜋
(

𝑥2

2
|0
𝜋) = 𝜋. 

 

  So the Fourier series for 𝑓(𝑥) = |𝑥| is: 

𝜋

2
−

4

𝜋
∑

cos[(2𝑘−1)𝑥]

(2𝑘−1)2
∞
𝑘=1 =

𝜋

2
−

4

𝜋
(

cos 𝑥

12 +
cos 3𝑥

32 +
cos 5𝑥

52 + ⋯ ).  
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∑
cos(2𝑘−1)𝑥

(2𝑘−1)2
∞
𝑘=1  converges uniformly on ℝ (and thus, so does the entire 

Fourier series) by the Weierstrass 𝑀-test since: 

|
cos[(2𝑘−1)𝑥]

(2𝑘−1)2 | ≤
1

(2𝑘−1)2 = 𝑀𝑘.    

 

∑
1

(2𝑘−1)2
∞
𝑘=1    converges because ∑

1

(2𝑘−1)2
∞
𝑘=1 ≤ ∑

1

𝑘2
∞
𝑘=1  and this 

converges because it’s a 𝑝-series with 𝑝 > 1. 

 

As we will see later, this series converges pointwise to the value of the function 

𝑓(𝑥) for each 𝑥 ∈ ℝ.  Thus 

𝑓(𝑥) = 
𝜋

2
−

4

𝜋
∑

cos[(2𝑘−1)𝑥]

(2𝑘−1)2
∞
𝑘=1  .   

 

 Since 𝑓(𝑥) = |𝑥| for −𝜋 ≤ 𝑥 ≤ 𝜋 we know 𝑓(0) = 0. Thus, 

 

0 = 
𝜋

2
−

4

𝜋
∑

cos(0)

(2𝑘−1)2
∞
𝑘=1 =

𝜋

2
−

4

𝜋
∑

1

(2𝑘−1)2
∞
𝑘=1    

 

        or         
𝜋

2
=

4

𝜋
∑

1

(2𝑘−1)2
∞
𝑘=1   ;    

 

hence 

         
𝜋2

8
= ∑

1

(2𝑘−1)2
∞
𝑘=1 = 1 +

1

32 +
1

52 +
1

72 + ⋯ +
1

(2𝑘−1)2 + ⋯  . 
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We know that if 𝑓 ∈ 𝐶2𝜋 then there is a sequence of trig polynomials (not 

necessarily 𝑆𝑛(𝑓)) that converges uniformly to 𝑓(𝑥) (and thus also pointwise). 

But does its Fourier series converge to 𝑓(𝑥)? And, if so, in what sense does it 

converge? Pointwise? Uniformly? Some other way? It turns out that the 

convergence is in terms of the 𝐿2-norm: 

‖𝑓‖2 = (
1

𝜋
∫ (𝑓(𝑥))

2𝜋

−𝜋
)

1

2
 .     

 

That is, 𝑆𝑛(𝑓)(𝑥) → 𝑓(𝑥) in the 𝐿2-norm if for all 𝜖 > 0, there exists an 𝑁 ∈ 𝑍+ 

such that if 𝑛 ≥ 𝑁 then: 

‖𝑓 − 𝑆𝑛(𝑓)‖2 = (
1

𝜋
∫ (𝑓(𝑥) − 𝑆𝑛(𝑓)(𝑥))2𝜋

−𝜋
)

1

2
<  𝜖  

 

or equivalently:                              
1

𝜋
∫ (𝑓(𝑥) − 𝑆𝑛(𝑓)(𝑥))2 𝑑𝑥 < (𝜖

𝜋

−𝜋
)2.   

 

The 𝐿2-norm is not an actual norm on the vector space of Riemann integrable 

functions on [−𝜋, 𝜋]. It is a norm for functions where 𝑓2 is Lebesgue integrable 

on [−𝜋, 𝜋]. This is because there are functions, 𝑓, where: 

∫ 𝑓2(𝑥)𝑑𝑥 
𝜋

−𝜋
= 0 but 𝑓(𝑥) ≢ 0 

 

 For example, if 𝑓(𝑥) = 1   when  𝑥 = 0 

     = 0   when  𝑥 ≠ 0 

 then 𝑓(𝑥) and 𝑓2(𝑥) are Riemann integrable functions with: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓2(𝑥)𝑑𝑥
𝜋

−𝜋
= 0

𝜋

−𝜋
  

 but 𝑓 ≢ 0 (in this case we call ‖ ‖2 a semi-norm). 

          However, the 𝐿2-norm is a norm on 𝐶2𝜋, since all elements of                                   

           𝐶2𝜋 are continuous. 
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Putting aside the issue that this norm is not actually a norm on 𝑅[−𝜋, 𝜋] for a 

moment, how do we show: 

 

1)  ‖𝜆𝑓‖2 = |𝜆|‖𝑓‖2 ;  𝜆 ∈ ℝ 
 

2) ‖𝑓 + 𝑔‖2 ≤  ‖𝑓‖2 + ‖𝑔‖2? 
 

 

1) ‖𝜆𝑓‖2 = (
1

𝜋
∫ (𝜆𝑓)2𝜋

−𝜋
)

1

2
= (

𝜆2

𝜋
∫ 𝑓2)

1

2
𝜋

−𝜋
 

             = |𝜆|(
1

𝜋
∫ 𝑓2)

1

2
𝜋

−𝜋
 

            = |𝜆|‖𝑓‖2 

 

2) ‖𝑓 + 𝑔‖2
2 =

1

𝜋
∫ (𝑓 + 𝑔)2𝜋

−𝜋
=

1

𝜋
[∫ 𝑓2𝜋

−𝜋
+ 2 ∫ 𝑓𝑔

𝜋

−𝜋
+ ∫ 𝑔2𝜋

−𝜋
] 

 

By the Cauchy-Schwarz inequality: 

∫ 𝑓𝑔
𝜋

−𝜋
≤ |∫ 𝑓𝑔

𝜋

−𝜋
| ≤ (∫ 𝑓2𝜋

−𝜋
)

1

2(∫ 𝑔2𝜋

−𝜋
)

1

2 = 𝜋‖𝑓‖2‖𝑔‖2 . So 

 

‖𝑓 + 𝑔‖2
2 ≤

1

𝜋
∫ 𝑓2𝜋

−𝜋
+ 2‖𝑓‖2‖𝑔‖2 +

1

𝜋
∫ 𝑔2𝜋

−𝜋
  

 

                   = ‖𝑓‖2
2 + 2‖𝑓‖2‖𝑔‖2 + ‖𝑔‖2

2 

 

                    = (‖𝑓‖2 + ‖𝑔‖2)2.  

 

          Thus         ‖𝑓 + 𝑔‖2 ≤ ‖𝑓‖2 + ‖𝑔‖2. 
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 Notice that < 𝑓, 𝑔 > =
1

𝜋
∫ 𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

𝜋

−𝜋
 acts like a dot product, 

 or inner product, for functions. For vectors in ℝn we have: 

‖�⃗�‖ = √�⃗� ∙ �⃗� 

 

 For functions in 𝑅[−𝜋, 𝜋] we have: 

‖𝑓‖2 = (
1

𝜋
∫ 𝑓2𝜋

−𝜋
)

1

2
= √< 𝑓, 𝑓 > . 

 

 For vectors we say �⃗� and �⃗⃗⃗� are orthogonal if: 

�⃗� ∙ �⃗⃗⃗� = 0 

 

 For functions we say 𝑓 and 𝑔 are orthogonal if: 

< 𝑓, 𝑔 > =
1

𝜋
∫ 𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

𝜋

−𝜋
= 0. 

  

Notice that the functions: 
1

√2
, cos 𝑥 , sin 𝑥 , cos 2𝑥 , sin 2𝑥, … are actually 

orthonormal with this inner product because:      

 

‖
1

√2
‖

2
= ‖cos 𝑘𝑥‖2 = ‖sin 𝑘𝑥‖2 = 1  

and all of the function are mutually orthogonal. 

 


