The Riemann-Stieltjes Integral- HW Problems

1. Show that if $f, g \in R_{\alpha}[a, b]$, where α is an increasing function and $f(x) \leq g(x)$ for all $x \in [a, b]$ then $\int_{a}^{b} f d\alpha \leq \int_{a}^{b} g d\alpha$.

2. Suppose $f^2 \in R_{\alpha}[a, b]$. Does this imply $f \in R_{\alpha}[a, b]$? Explain your answer.

3a. Suppose α is continuous, increasing and non-constant on [0,2]. From the definition of the Riemann-Stieltjes integral show that

f(x) = 1 at x = 1= 0 otherwise

Is Riemann-Stieltjes integrable and $\int_0^2 f d\alpha = 0$.

b. Suppose
$$f(x) = 1$$
 if $x \in \mathbb{Q}$
= -1 if $x \notin \mathbb{Q}$.

Show that f is not Riemann-Stieltjes integrable with respect to α on [0,2].

4. Let $\alpha(x) = 0$ if $-1 \le x < 0$ = 1 if $0 \le x \le 1$. a. Prove that f(x) = 3 if $-1 \le x \le 0$

 $= 5 \quad \text{if} \quad 0 < x \le 1$

is Riemann-Stieltjes integrable on [-1,1] and find $\int_{-1}^{1} f d\alpha$.

b. Prove that
$$f(x) = 3$$
 if $-1 \le x < 0$
= 5 if $0 \le x \le 1$

is not Riemann-Stieltjes integrable on [-1,1].

5. Let
$$\alpha(x) = 0$$
 if $0 \le x \le 1$

= 2 if $1 < x \le 2$.

a. Prove that
$$f(x) = 4$$
 if $0 \le x \le 1$
= 7 if $1 < x \le 2$

is not Riemann-Stieltjes integrable on [-1,1].

b. Prove that
$$f(x) = 4$$
 if $0 \le x < 1$
= 7 if $1 \le x \le 2$

is Riemann-Stieltjes integrable on [-1,1] and find $\int_0^2 f d\alpha$.

6. Let $\alpha(x) = 0$ if $-1 \le x \le 0$

$$= 1 \text{ if } 0 < x \le 1.$$

Prove that if f(x) is continuous on [-1,1] then $f \in R_{\alpha}[-1,1]$. In that case find $\int_{-1}^{1} f d\alpha$.

Note: f only needs to be continuous from the right at x = 0 for the statement to be true.

7. Suppose f(x) is a continuous real-valued function on \mathbb{R} . Let [x]=the greatest integer less than or equal to x. Evaluate

a.
$$\int_{1}^{n} f d[x]$$
 if $n \in \mathbb{Z}^{+}$.

b. $\int_1^s fd[x]$ if $s \in \mathbb{R}$, s > 1.

8. Suppose that $f \in R_{\alpha}[a, b]$, α an increasing function on [a, b]. Show that if $[c, d] \subseteq [a, b]$ then $f \in R_{\alpha}[c, d]$ and $\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$.