Functions of Bounded Variation: Jordan's Theorem

Def. Let f be a real valued function defined on a closed, bounded interval [a, b] and P a partition $\{x_0, x_1, x_2, ..., x_k\}$ of [a, b]. The **variation of** f with respect to P is defined as:

Def. The **total variation of** f on [a, b] is defined as:

$$TV(f) = \sup\{V(f, P) \mid P \text{ a partition of } [a, b]\}.$$

Def. A real valued function f on the closed, bounded interval [a, b] is said to be of **bounded variation** if $TV(f) < \infty$.

Ex. If f is an increasing function on [a, b], then f is of bounded variation and TV(f) = f(b) - f(a).

Given any partition P of [a, b]: $V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$

Since
$$f$$
 is increasing $f(x_i) - f(x_{i-1}) \ge 0$
so $|f(x_i) - f(x_{i-1})| = f(x_i) - f(x_{i-1}).$

$$V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$$

= $(f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \cdots (f(x_k) - f(x_{k-1}))$
= $f(x_k) - f(x_0) = f(b) - f(a).$

Thus
$$TV(f) = \sup_{P} V(f, P) = f(b) - f(a).$$

Def. A real valued function on [a, b] is called **Lipschitz** if there exists a $c \in \mathbb{R}$ such that

$$|f(x) - f(y)| \le c|x - y|, \text{ for all } x, y \in [a, b].$$

Notice that any Lipschitz function is uniformly continuous on [a, b].

We can see this by choosing $\delta = \frac{\epsilon}{c}$. Thus if $|x - y| < \delta = \frac{\epsilon}{c}$ then $|f(x) - f(y)| \le c|x - y| < c\delta = c\left(\frac{\epsilon}{c}\right) = \epsilon$. In addition, if f(x) is differentiable for all $x \in [a, b]$, with $|f'(x)| \le k$, for some nonnegative real number k, then f(x) is Lipschitz.

This follows from the Mean Value Theorem, since for any $x, y \in [a, b]$:

$$\frac{f(x)-f(y)}{x-y} = f'(c) \text{ for some } c \in (a,b).$$

Thus

 $\left|\frac{f(x)-f(y)}{x-y}\right| = |f'(c)| \le k.$

Hence $|f(x) - f(y)| \le k|x - y|$, for all $x, y \in [a, b]$.

Note: f(x) can be Lipschitz without being differentiable. For example f(x) = |x| is Lipschitz on [-1,1] but not differentiable at x = 0.

Ex. Let f be a Lipschitz function on [a, b]. Then f is of bounded variation on [a, b] and $TV(f) \le c(b - a)$ where c is the Lipschitz constant, $|f(u) - f(v)| \le c|u - v|$ for all $u, v \in [a, b]$.

Let
$$P = \{x_0, x_1, x_2, ..., x_k\}$$
 be any partition of $[a, b]$. Then:
 $V(f, P) = \sum_{i=1}^k |f(x_i) - f(x_{i-1})| \le \sum_{i=1}^k c|x_i - x_{i-1}| = c|b - a|.$

Thus c|b-a| is an upper bound for V(f, P) and $TV(f) \le c(b-a)$.

Note: Bounded variation does not imply a function is Lipschitz. For example, $f(x) = \sqrt{x}$, $0 < x \le 1$, is of bounded variation but is not Lipschitz since its derivative is unbounded.

Ex. Define f on [0,1] by

$$f(x) = x\cos(\frac{\pi}{2x}) \quad \text{if } 0 < x \le 1$$
$$= 0 \qquad \text{if } x = 0.$$

f is continuous on [0,1], and therefore bounded, but does not have

bounded variation.

If we take the partition: $P_n = \{0, \frac{1}{2n}, \frac{1}{2n-1}, \frac{1}{2n-2}, \dots, \frac{1}{3}, \frac{1}{2}, 1\}$ of [0,1] $f(x_0) = 0$

$$f(x_1) = \frac{1}{2n} \cos\left(\frac{\pi}{2\left(\frac{1}{2n}\right)}\right) = \frac{1}{2n} \cos(n\pi) = \pm \frac{1}{2n}$$

$$f(x_2) = \frac{1}{2n-1} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-1}\right)}\right) = \frac{1}{2n-1} \cos\left(\frac{2n-1}{2}\pi\right) = 0$$

$$f(x_3) = \frac{1}{2n-2} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-2}\right)}\right) = \frac{1}{2n-2} \cos\left(\frac{2n-2}{2}\pi\right) = \pm \frac{1}{2n-2}$$

$$f(x_4) = \frac{1}{2n-3} \cos\left(\frac{2n-3}{2}\pi\right) = 0$$

So
$$|f(x_1) - f(x_0)| = \frac{1}{2n}$$

 $|f(x_2) - f(x_1)| = \frac{1}{2n}$
 $|f(x_3) - f(x_2)| = \frac{1}{2n-2}$
 $|f(x_4) - f(x_3)| = \frac{1}{2n-2};$ etc.

Thus $V(f, P_n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$; which diverges as n goes to ∞ . So f is not of bounded variation.

Ex. Notice that if f is $C^1(a, b)$ (i.e. f'(x) is continuous on (a, b)) and continous on [a, b], then for any partition $P = \{x_0, x_1, x_2, ..., x_k\}$:

$$f(x_i) - f(x_{i-1}) = \int_{x_{i-1}}^{x_i} f'$$

by the fundamental theorem of Calculus.

Thus we have:

$$|f(x_i) - f(x_{i-1})| = |\int_{x_{i-1}}^{x_i} f'| \le \int_{x_{i-1}}^{x_i} |f'|.$$

So
$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le \int_a^b |f'|.$$

Thus $TV(f) \leq \int_a^b |f'|$, and f is of bounded variation as long as $\int_a^b |f'| < \infty$.

Ex. All polynomials are of bounded variation on [a, b].

L

Let
$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 be a polynomial. $f(x) \in C^1(a, b)$.
 $f'(x) = a_1 + 2a_2 x + \dots + na_n x^{n-1}$.

$$\begin{split} \int_{a}^{b} |a_{1} + 2a_{2}x + \dots + na_{n}x^{n-1}|dx \\ &\leq \int_{a}^{b} (|a_{1}| + 2|a_{2}||x| + \dots n|a_{n}||x^{n-1}|)dx \\ &\leq (|a_{1}| + 2|a_{2}|(b-a) + \dots + n|a_{n}|(b-a)^{n-1})(b-a) \\ &< \infty. \end{split}$$

Thus $\int_a^b |f'| dx < \infty$ and f(x) is of bounded variation.

One can also prove this by showing f'(x) is bounded and thus f(x) is Lipschitz.

Def. A function $f: [a, b] \to \mathbb{R}$ is called a **step function** if there are finitely many points $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ such that f is constant on each open interval (t_i, t_{i+1}) and f takes on any real values at the t_i 's.

Ex. Every step function is of bounded variation. TV(f) is equal to the sum of all left and right hand "jumps" in the graph of f. That is:

$$TV(f) = \sum_{i=0}^{n} (|f(t_i) - \lim_{t \to t_i^+} f(t)| + |f(t_i) - \lim_{t \to t_i^-} f(t)|)$$

Notice if $c \in [a, b]$ and c is not one of the endpoints of a partition P, we can create a refinement P' of P by adding c.

Then by the triangle inequality: $V(f, P) \leq V(f, P')$. Here's why.

The triangle inequality says $|a + b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$. $|f(x_i) - f(x_{i-1})| \le |f(x_i) - f(c)| + |f(c) - f(x_{i-1})|$

where $a = f(x_i) - f(c)$, $b = f(c) - f(x_{i-1})$ $a + b = f(x_i) - f(x_{i-1})$. Lemma: If $f:[a,b] \to \mathbb{R}$ is of bounded variation, then f is also bounded (i.e. there exists an $M \in \mathbb{R}^+$ such that $|f(x)| \le M$ for all $x \in [a,b]$) and satisfies: $||f||_{\infty} \le |f(a)| + TV(f)$.

Proof. Let $a \le x \le b$, and set $P = \{a, x, b\}$. Then $|f(x) - f(a)| \le V(f, P) \le TV(f)$.

By the triangle inequality

$$|f(x)| = \left| \left(f(x) - f(a) \right) + f(a) \right| \le |f(x) - f(a)| + |f(a)|.$$

So $|f(x)| \le TV(f) + |f(a)|$

$$\Rightarrow \sup_{a \le x \le b} |f(x)| = ||f(x)||_{\infty} \le |f(a)| + TV(f).$$

Def. $BV[a, b] = \{$ the set of functions of bounded variation on $[a, b] \}$.

BV[a, b] is a vector space since if $f, g \in BV[a, b]$ then $(af + bg) \in BV[a, b]$ for and $a, b \in \mathbb{R}$ (we will see this shortly), and $f(x) = 0 \in BV[a, b]$.

Notice that BV[a, b] contains some subsets that are dense in C[a, b]. For example, all polynomials on [a, b] are of bounded variation and all

polygonal functions on [a, b] are of bounded variation. Thus the closure of BV[a, b] under the sup-norm (i.e. $||f(x)||_{\infty} = \sup_{a \le x \le b} |f(x)|$) contains C[a, b].

But we saw that $f(x) = x\cos\left(\frac{\pi}{2x}\right)$ if $0 < x \le 1$ = 0 if x = 0

is continuous on [0,1], but not of bounded variation.

Thus there exists a sequence of functions of bounded variation, for example a sequence of polynomials, that converges to f(x) with the sup-norm. Thus the normed linear space BV[a, b] with $||f(x)||_{\infty} = \sup_{\substack{a \le x \le b}} |f(x)|$, is not complete (and thus not a Banach space with this norm). so if BV[a, b] is going to be a Banach space, we will need to find a different norm. The TV(f) almost works.

Lemma: Let $f, g \in BV[a, b]$ and $c \in \mathbb{R}$. Then

a. TV(f) = 0 if and only if f is constant. b. TV(cf) = |c|TV(f)c. $TV(f + g) \le TV(f) + TV(g)$ d. $TV(|f|) \le TV(f)$ e. $TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]})$, for $a \le c \le b$. Proof of c.

Let *P* be any partition of [a, b], $P = \{x_0, x_1, \dots, x_n\}$.

$$V(f + g, P) = \sum_{i=1}^{n} |(f + g)(x_i) - (f + g)(x_{i-1})|$$

$$\leq \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| + \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|$$

$$= V(f, P) + V(g, P).$$

Thus $\sup_{P} V(f + g, P) \leq \sup_{P} V(f, P) + \sup_{P} V(g, P).$ Hence $TV(f + g) \leq TV(f) + TV(g).$

TV(f) is not a norm on BV[a, b] because $TV(f_{[a,b]}) = 0$ does not imply that f(x) = 0 (only that f(x) =constant). However, we can create a norm on BV[a, b] by

$$||f||_{BV} = |f(a)| + TV(f_{[a,b]}).$$

From an earlier lemma we had

$$||f||_{\infty} \leq |f(a)| + TV(f_{[a,b]}) = ||f||_{BV}.$$

Thus convergence in the *BV* norm, $||f||_{BV}$, implies convergence in the uniform convergence norm, $||f||_{\infty}$. Let's see why.

We say $f_n \to f$ in the *BV* norm if given any $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $\|f_n - f\|_{BV} < \epsilon$.

But then $\|f_n - f\|_{\infty} \le \|f_n - f\|_{BV} < \epsilon$.

Thus the same N that forces $||f_n - f||_{BV} < \epsilon$ will also force $||f_n - f||_{\infty} < \epsilon$. So $f_n \to f$ in the sup-norm.

Theorem: BV[a, b] is complete under $||f||_{BV} = |f(a)| + TV(f_{[a,b]})$.

Proof. Let $\{f_n\}$ be a Cauchy sequence in BV[a, b].

Thus $\{f_n\}$ is also a Cauchy sequence under the uniform norm, $||f||_{\infty}$.

That means for all $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if

$$n,m \ge N$$
 then $\sup_{a \le x \le b} |f_n(x) - f_m(x)| < \epsilon$.

Thus for each $x \in [a, b]$, the sequence of real number $\{f_n(x)\}$

is a Cauchy sequence and so converges to a real number, f(x).

Now let's show that f(x) is first bounded and then of bounded variation.

Each f_n is of bounded variation and thus must be bounded on [a, b].

Since for $m, n \ge N$ we have $\sup_{a \le x \le b} |f_n(x) - f_m(x)| < \epsilon$.

if $|f_N(x)| \le K$, then $|f_n(x)| \le K + \epsilon$, for all $n \ge N$. Hence $|f(x)| \le K + \epsilon$, and f must be bounded on [a, b].

Now we need to show that $f(x) \in BV[a, b]$.

Let *P* be any partition of [a, b] and $\epsilon > 0$. Choose *N* such that if $m, n \ge N$ then $||f_n - f_m||_{BV} < \epsilon$. If $f_n \to f$ pointwise on [a, b], then $V(f_n, P) \to V(f, P)$ for any partition P (this is a HW problem).

Thus for any $n \ge N$: $|f(a) - f_n(a)| + V(f - f_n, P) = \lim_{m \to \infty} [|f_n(a) - f_m(a)| + V(f_m - f_n, P)]$ $\le \sup_{m \ge N} ||f_m - f_n||_{BV} \le \epsilon.$

This holds for all P hence

$$\|f - f_n\|_{BV} \le \epsilon$$
 for all $n \ge N$.

Thus $f_n \to f$ in $\|\cdot\|_{BV}$.

Also, $(f - f_n) \in BV[a, b]$ and $f_n \in BV[a, b]$, hence $f \in BV[a, b]$.

So
$$BV[a, b]$$
 with $||f||_{BV} = |f(a)| + TV(f_{[a,b]})$ is complete.

Notice that convergence in $\|\cdot\|_{\infty}$ does not imply convergence in $\|\cdot\|_{BV}$. Since $f(x) = x\cos\left(\frac{\pi}{2x}\right)$ if $0 < x \le 1$ = 0 if x = 0

Is continuous on [0,1] we know from the Weierstrass approximation theorem that there is a sequence of polynomials, $p_n(x)$, that converges uniformly to f(x).

But each $p_n(x) \in BV[0,1]$ and $f(x) \notin BV[0,1]$. However, BV[0,1] is complete under $\|\cdot\|_{BV}$ so $\{p_n(x)\}$ can't be a Cauchy sequence in BV[0,1].

Theorem: Fix $f \in BV[a, b]$ and let $v(x) = TV(f_{[a,x]})$, for $a \le x \le b$, and v(a) = 0. Then both v and v - f are increasing. Thus

$$f = v - (v - f)$$

Is the difference of two increasing functions.

Since monotone functions are of bounded variation we get:

Corollary (Jordan's Theorem) A function $f:[a, b] \to \mathbb{R}$ is of bounded variation if and only if f can be written as the difference of two increasing functions.