Functions of Bounded Variation: Jordan’s Theorem

Def. Let f be a real valued function defined on a closed, bounded interval [a, b]

and P a partition {xg, X1, X2, ..., Xx } of [a, b]. The variation of f with respect to
P is defined as:

V(f,P) = Xk |f(x) — foxi_1)]-
 Llength= [f(x;) — f(xiz1)]

Y=

Xil1 Xi

Def. The total variation of f on [a, b] is defined as:

TV(f) = sup{V(f,P)| P a partition of [a,b]}.

Def. A real valued function f on the closed, bounded interval [a, b] is said to be
of bounded variation if TV (f) < oo,



Ex. If f is an increasing function on [a, b], then f is of bounded variation and

TV(f) = f(b) = f(@).

Given any partition P of [a,b]: V(f,P) = {-czl |f (x;) — f(xi—1)|

Since f isincreasing f(x;) — f(x;—1) = 0

so |f () — fQxi—)l = f(xp) — f(xi-)

V(f,P) = s If () — f CGxima)
= (fx) = f(xo)) + (fCr2) = fxp)) + -+ (f (i) = f (xge—1))
= f(xx) — f(x0) = £ () — f(a).

Thus TV (f) = sup V(f,P)=f(b) - f(a).

Def. A real valued function on [a, b] is called Lipschitz if there existsa ¢ € R
such that

If(x) = f)| <clx—y|, forallx,y € [a,b].

Notice that any Lipschitz function is uniformly continuous on [a, b].

We can see this by choosing 6 = g .

Thusif|[x —y| < 6 =§ then

FG - fO<clx-yl<ecs=c(5)=e



In addition, if f(x) is differentiable for all x € [a, b], with |f'(x)| < k, for
some nonnegative real number k, then f (x) is Lipschitz.

This follows from the Mean Value Theorem, since for any x,y € [a, b]:

fFX)-f)

—y f'(c) forsome c € (a,b).

Thus |f—("ij; O =10 < k.

Hence |f(x) — f(¥)| < k|x —y|, forallx,y € [a, b].

Note: f(x) can be Lipschitz without being differentiable. For example f(x) = |x|
is Lipschitz on [—1,1] but not differentiable at x = 0.

Ex. Let f be a Lipschitz function on [a, b]. Then f is of bounded variation on
[a,b] and TV (f) < c(b — a) where c is the Lipschitz constant,
If(u) — f(v)] < clu—v]| forallu,v € [a, b].

Let P = {xg, X1, X3, ..., X } be any partition of [a, b]. Then:

V(f.P) = it If () = f ()] S Bisy el — x| = clb — al.
Thus c|b — a| is an upper bound for V.(f,P) and TV (f) < c(b — a).

Note: Bounded variation does not imply a function is Lipschitz. For example,

f(x) =+/x, 0 <x < 1,is of bounded variation but is not Lipschitz since its
derivative is unbounded.



Ex. Define f on [0,1] by
flx) = xcos(%) if0<x<1
=0 if x =0.
f is continuous on [0,1], and therefore bounded, but does not have

bounded variation.

y = xcos(%)
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If we take the partition: P, = {0, ,1} of [0,1]

flxo) =0

Fr) = Zicos< ) = o costom) =

( ) 1_1 cos (an—ln_) =0
f(xs) = 5 cos (2 - )) 3 cos
COS(Z2 3ﬂ)

COS

fxz) =

1
2n—2

2n—2

)=+

fxq) =



So 1f (1) = fxo)| = o
F ) = fG)l =5

1
2n—2

|f (x3) — fx2)| =
f () = flg)l =5 ete.

Thus V(f,B) =1+ % + § + -4 %; which diverges as n goes to oo.

So f is not of bounded variation.

Ex. Notice thatif f is C1(a, b) (i.e. f'(x) is continuous on (a, b)) and
continous on [a, b], then for any partition P = {x¢, X1, X3, ..., Xi }:

fG) = fliD) = [ S

by the fundamental theorem of Calculus.

Thus we have:

FC) = fladl =1L FI< [0 If'I
So IO — f)I < [ 1L

b b
Thus TV (f) < fa |f'], and f is of bounded variation as long as fa If'] < oo.



Ex. All polynomials are of bounded variation on [a, b].

Let f(x) = ay + a;x + ayx? + -+ + a,x™ be a polynomial. f(x) € C*(a,b).

f'(x) = ay + 2a,x + -+ nay,x™ L.

f; la; + 2a,x + -+ + na,x™ | dx
b —_
< [, (aql + 2]ay||x| + -+ nla, [|x™~[)dx
< (lai| + 2laz|(b — @) + -+ + n|a,|(b — )" 1)(b — a)

< 0o,

b
Thus fa |f'|dx < ooand f(x) is of bounded variation.

One can also prove this by showing f'(x) is bounded and thus f(x) is Lipschitz.

Def. A function f:[a,b] = Ris called a step function if there are finitely many
pointsa =ty < t; <t, <-:-<t, = bsuchthatf is constant on each open
interval (t;, t;+1) and f takes on any real values at the t;’s.

= f(t) a step function -

()

L= L




Ex. Every step function is of bounded variation. TV (f) is equal to the sum of all
left and right hand “jumps” in the graph of f. Thatis:

TV(f) = Zo(If (&) = lim £ + (&) = lim F©D.

Notice if ¢ € [a, b] and c is not one of the endpoints of a partition P, we can
create a refinement P’ of P by adding c.

<

Xi-1 ¢ Xi

Then by the triangle inequality: V(f,P) < V(f,P"). Here’s why.

The triangle inequality says |a + b| < |a| + |b| foralla,b € R.

f () = fFOu—D < 1fF () = FOl+ 1f () = F(xi-a)]

wherea = f(x;) — f(c), b=f(c)— f(xi_1)
a+b=f(x)—flxi-1)



Lemma: If f:[a, b] = R is of bounded variation, then f is also bounded (i.e.
there exists an M € R* such that |f(x)| < M for all x € [a, b]) and satisfies:

Ifllo < 1f (@] + TV ().

Proof. Leta < x < b,andset P = {a, x, b}.

Then |f(x) — f(a)| < V(f,P) < TV(f).

By the triangle inequality

F@)] = |(fe) = f(@) + f@] < Ifx) = fF(@)] + |f(@)].
So If ()| <TV() + |f(a)|

= sup [f()| =[f e < |f (@] +TV ().

asx<b
Def. BV|[a, b] = {the set of functions of bounded variation on [a, b]}.

BV|a, b] is a vector space since if f, g € BV|[a, b] then (af + bg) € BV|a, b] for
and a, b € R (we will see this shortly), and f(x) = 0 € BV|a, b].

Notice that BV [a, b] contains some subsets that are dense in C[a, b]. For
example, all polynomials on [a, b] are of bounded variation and all

polygonal functions on [a, b] are of bounded variation. Thus the closure of
BV[a, b] under the sup-norm (i.e. || f (x)|lc = sup |f(x)]|) contains C[a, b].

as<x<b

But we saw that f(x) = xcos (%) if 0<x<1

=0 if x=0

is continuous on [0,1], but not of bounded variation.



BV[a,b] Cla,b]
polynomials

Step functions

Lipschitz functions

Thus there exists a sequence of functions of bounded variation, for example a
sequence of polynomials, that converges to f (x) with the sup-norm. Thus the

normed linear space BV [a, b] with ||f (x)||cc = sup |f(x)], is not complete

asx<b
(and thus not a Banach space with this norm). so if BV [a, b] is going to be a

Banach space, we will need to find a different norm. The TV (f) almost works.

Lemma: Let f,g € BV[a,b] and ¢ € R. Then

. TV(f) = Oifand only if f is constant.

.TV(cf) = |c|TV(f)

CTV(f+9) STV() +TV(g)

CTV(AfD = TV(f)

TV (fiap)) = TV (fiac)) + TV (ficp)), for a <c < b.

T O O T L
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Proof of c.

Let P be any partition of [a, b], P = {xg, X1, ..., Xn }.

V(f+9.P) =X 1(F + 9 (x) — (f + 9) (-
< Yiealf () = f Ol + Xizg [g () — g Ceq)|
=V(f,P)+V(g,P).

Thus sgp V(f+g,P)< Sl;p V(f,P)+ sgp V(g,P).

Hence TV(f+g) <TV(f)+TV(9).

TV (f) is not a norm on BV [a, b] because TV (fia,) = 0 does not imply that
f(x) = 0 (only that f(x) = constant). However, we can create a norm on
BV|a, b] by

Ifllay = IfF @]+ TV(fian).

From an earlier lemma we had

Ifllo < 1f (@] + TV (fiap1) = Ifllsv-

Thus convergence in the BV norm, || f|| gy, implies convergence in the uniform
convergence norm, ||f|l.. Let’s see why.

We say f,, = f inthe BV norm if given any € > 0, there existsan N € Z* such
thatifn > Nthen ||, — fllgr < €.

Butthen ||f, — flleo < llfn = fllav <e€.

Thus the same N that forces || f;, — fllgy < € will also force ||f;, — fllc < €. So
fn = f in the sup-norm.
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Theorem: BV |[a, b] is complete under ||fllgy = |f(a)| + TV(f[a,b]).

Proof. Let {f,} be a Cauchy sequence in BV [a, b].

Thus {f;,} is also a Cauchy sequence under the uniform norm, ||f]|c.

That means for all € > 0, there exists an N € Z* such that if

n,m =N then sup |f,, (x) — fin(x)] < €.

as<x<b

Thus for each x € [a, b], the sequence of real number{f,, (x)}

is a Cauchy sequence and so converges to a real number, f(x).

Now let’s show that f(x) is first bounded and then of bounded variation.
Each f,, is of bounded variation and thus must be bounded on [a, b].

Since form,n > N we have sup |f, (x) — fin(x)| < €.
asx<b

if |fy(x)] < K, then |f,,(x)| < K + €,foralln > N.
Hence |f(x)| < K + €, and f must be bounded on [a, b].

Now we need to show that f(x) € BV[a, b].

Let P be any partition of [a, b] and € > 0.

Choose N such thatif m,n = N then || f, — fillgy < €.
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If f, = f pointwise on [a, b], then V (f,,, P) = V(f, P) for

any partition P (this is a HW problem).

Thus foranyn > N:
If(@) = (@) + V(f = fo, P) = lim [| fo(@) = frn(@)| + V (frn = fu, P)]

< sup|lfm = fallsy < €.
mz=N

This holds for all P hence

If = fullgy < € foralln > N.

Thus f, = fin ||l gy

Also, (f — f,) € BV|[a, b] and f,, € BV]a, b], hence f € BV]a, b].

So BV[a, b] with || f|lgy = |f(@)| + TV(f[a,b]) is complete.

Notice that convergence in ||*||, does not imply convergence in ||*||gy. Since
f(x) =xcos(%) if 0<x<1
=0 if x=0

Is continuous on [0,1] we know from the Weierstrass approximation theorem
that there is a sequence of polynomials, p,,(x), that converges uniformly to f(x).

But each p,,(x) € BV[0,1] and f(x) ¢ BV[0,1]. However, BV[0,1] is complete
under ||-|| gy so {pn(x)} can’t be a Cauchy sequence in BV[0,1].
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Theorem: Fix f € BV[a, b] and let v(x) = TV (f{g]), fora < x < b, and
v(a) = 0. Then both v and v — f are increasing. Thus

f=v-@-

Is the difference of two increasing functions.

Proof. Fory > x we have:

v()’) —v(x) = TV(f[a,y]) - Tv(f[a,x])
=TV(fixy) = If () — f(x)] = 0.

Hence v is increasing.

But v(y) —v(x) = f(y) — f(x) so L
w®) - fy) — wk) - f(x)) = 0.

Thus v — f is increasing.

Since monotone functions are of bounded variation we get:

Corollary (Jordan’s Theorem) A function f: [a, b] = R is of bounded variation if
and only if f can be written as the difference of two increasing functions.



