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                     Functions of Bounded Variation:  Jordan’s Theorem 

 

Def.  Let 𝑓 be a real valued function defined on a closed, bounded interval [𝑎, 𝑏] 

and 𝑃 a partition {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘} of [𝑎, 𝑏].  The variation of 𝒇 with respect to 

𝑷 is defined as: 

                           𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1 . 

 

 

 

 

 

 

 

 

 

 

Def.  The total variation of 𝒇 on [𝑎, 𝑏] is defined as: 

                           𝑇𝑉(𝑓) = sup{𝑉(𝑓, 𝑃)|  𝑃 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]} . 

 

 

Def.  A real valued function 𝑓 on the closed, bounded interval [𝑎, 𝑏] is said to be 

of bounded variation if 𝑇𝑉(𝑓) < ∞. 

 

 

 

𝑦 = 𝑓(𝑥) 

  𝑥𝑖−1                  𝑥𝑖  

Length= |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| 
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Ex.  If 𝑓 is an increasing function on [𝑎, 𝑏], then 𝑓 is of bounded variation and 

       𝑇𝑉(𝑓) = 𝑓(𝑏) − 𝑓(𝑎). 

 

Given any partition 𝑃 of [𝑎, 𝑏]:     𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1    

 

Since 𝑓 is increasing 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) ≥ 0  

 so |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1).   

 

  𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1  

             = (𝑓(𝑥1) − 𝑓(𝑥0)) + (𝑓(𝑥2) − 𝑓(𝑥1)) + ⋯ (𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)) 

             = 𝑓(𝑥𝑘) − 𝑓(𝑥0) = 𝑓(𝑏) − 𝑓(𝑎).  

 

  Thus 𝑇𝑉(𝑓) = sup
𝑃

𝑉(𝑓, 𝑃) = 𝑓(𝑏) − 𝑓(𝑎). 

 

Def.  A real valued function on [𝑎, 𝑏] is called Lipschitz if there exists a 𝑐 ∈ ℝ 
such that      

                 |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦|,   for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]. 

 

Notice that any Lipschitz function is uniformly continuous on [𝑎, 𝑏].   

 

We can see this by choosing  𝛿 =
𝜖

𝑐
 .    

Thus if |𝑥 − 𝑦| < 𝛿 =
𝜖
𝑐

   then 

                 |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| < 𝑐𝛿 = 𝑐 (
𝜖
𝑐
) = 𝜖. 
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In addition, if 𝑓(𝑥) is differentiable for all 𝑥 ∈ [𝑎, 𝑏], with |𝑓′(𝑥)| ≤ 𝑘, for 

some nonnegative real number 𝑘, then 𝑓(𝑥) is Lipschitz.    

 

This follows from the Mean Value Theorem, since for any 𝑥, 𝑦 ∈ [𝑎, 𝑏]: 

                   
𝑓(𝑥)−𝑓(𝑦)

𝑥−𝑦
= 𝑓′(𝑐) for some 𝑐 ∈ (𝑎, 𝑏).      

Thus        |
𝑓(𝑥)−𝑓(𝑦)

𝑥−𝑦
| = |𝑓′(𝑐)| ≤ 𝑘. 

Hence  |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑘|𝑥 − 𝑦|,   for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]. 

 

Note: 𝑓(𝑥) can be Lipschitz without being differentiable.  For example 𝑓(𝑥) = |𝑥| 

is Lipschitz on [−1,1] but not differentiable at 𝑥 = 0. 

 

Ex.  Let 𝑓 be a Lipschitz function on [𝑎, 𝑏].  Then 𝑓 is of bounded variation on 

[𝑎, 𝑏] and 𝑇𝑉(𝑓) ≤ 𝑐(𝑏 − 𝑎) where 𝑐 is the Lipschitz constant,                      

|𝑓(𝑢) − 𝑓(𝑣)| ≤ 𝑐|𝑢 − 𝑣|  for all 𝑢, 𝑣 ∈ [𝑎, 𝑏]. 

 

Let 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘} be any partition of [𝑎, 𝑏]. Then: 

      𝑉(𝑓, 𝑃) = ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑘
𝑖=1 ≤ ∑ 𝑐|𝑥𝑖 − 𝑥𝑖−1|𝑘

𝑖=1 = 𝑐|𝑏 − 𝑎|. 

 

Thus 𝑐|𝑏 − 𝑎| is an upper bound for 𝑉(𝑓, 𝑃) and 𝑇𝑉(𝑓) ≤ 𝑐(𝑏 − 𝑎). 

 

Note: Bounded variation does not imply a function is Lipschitz.  For example, 

𝑓(𝑥) = √𝑥,   0 < 𝑥 ≤ 1, is of bounded variation but is not Lipschitz since its 

derivative is unbounded. 
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Ex.  Define 𝑓 on [0,1] by 

             𝑓(𝑥) = 𝑥𝑐𝑜𝑠(
𝜋

2𝑥
)     if  0 < 𝑥 ≤ 1     

                       = 0                   if  𝑥 = 0. 

    𝑓 is continuous on [0,1], and therefore bounded, but does not have  

    bounded variation.     

 

 

If we take the partition:   𝑃𝑛 = {0,
1

2𝑛
,

1

2𝑛−1
,

1

2𝑛−2
, … ,

1

3
,

1

2
, 1}  of  [0,1] 

𝑓(𝑥0) = 0  

𝑓(𝑥1) =
1

2𝑛
cos (

𝜋

2(
1

2𝑛
)
) =

1
2𝑛

cos(𝑛𝜋) = ±
1

2𝑛
      

𝑓(𝑥2) =
1

2𝑛−1
cos (

𝜋

2(
1

2𝑛−1
)
) =

1

2𝑛−1
cos (

2𝑛−1

2
𝜋) = 0     

𝑓(𝑥3) =
1

2𝑛−2
cos (

𝜋

2(
1

2𝑛−2
)
) =

1

2𝑛−2
cos (

2𝑛−2

2
𝜋) = ±

1

2𝑛−2
     

𝑓(𝑥4) =
1

2𝑛−3
cos (

2𝑛−3

2
𝜋) = 0     

⋮  

𝑦 = 𝑥𝑐𝑜𝑠(
𝜋

2𝑥
)      

1 
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So   |𝑓(𝑥1) − 𝑓(𝑥0)| =
1

2𝑛
 

       |𝑓(𝑥2) − 𝑓(𝑥1)| = 
1

2𝑛
 

       |𝑓(𝑥3) − 𝑓(𝑥2)| =
1

2𝑛−2
  

       |𝑓(𝑥4) − 𝑓(𝑥3)| =
1

2𝑛−2
 ;    etc.  

 

Thus  𝑉(𝑓, 𝑃𝑛) = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
 ;  which diverges as 𝑛 goes to ∞. 

So 𝑓 is not of bounded variation. 

 

Ex.  Notice that if 𝑓 is 𝐶1(𝑎, 𝑏) (i.e. 𝑓′(𝑥) is continuous on (𝑎, 𝑏)) and 

continous on [𝑎, 𝑏], then for any partition 𝑃 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘}: 

                     𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) = ∫ 𝑓′
𝑥𝑖

𝑥𝑖−1
 

by the fundamental theorem of Calculus.  

 

Thus we have: 

                    |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| = | ∫ 𝑓′| ≤ ∫ |𝑓′|
𝑥𝑖

𝑥𝑖−1

𝑥𝑖

𝑥𝑖−1
. 

 

So                              ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| ≤ ∫ |𝑓′|
𝑏

𝑎
𝑛
𝑖=1 . 

 

Thus  𝑇𝑉(𝑓) ≤ ∫ |𝑓′|
𝑏

𝑎
,  and 𝑓 is of bounded variation as long as ∫ |𝑓′|

𝑏

𝑎
< ∞. 
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Ex.  All polynomials are of bounded variation on [𝑎, 𝑏].  

 

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 be a polynomial.  𝑓(𝑥) ∈ 𝐶1(𝑎, 𝑏). 

      𝑓′(𝑥) = 𝑎1 + 2𝑎2𝑥 + ⋯ + 𝑛𝑎𝑛𝑥𝑛−1.  

 

     ∫ |𝑎1 + 2𝑎2𝑥 + ⋯ + 𝑛𝑎𝑛𝑥𝑛−1|𝑑𝑥
𝑏

𝑎
                                                                                                

                           ≤ ∫ (|𝑎1| + 2|𝑎2||𝑥| + ⋯ 𝑛|𝑎𝑛||𝑥𝑛−1|)𝑑𝑥
𝑏

𝑎
 

                              ≤ (|𝑎1| + 2|𝑎2|(𝑏 − 𝑎) + ⋯ + 𝑛|𝑎𝑛|(𝑏 − 𝑎)𝑛−1)(𝑏 − 𝑎)     

                           < ∞. 

   Thus ∫ |𝑓′|𝑑𝑥
𝑏

𝑎
< ∞ and 𝑓(𝑥) is of bounded variation.  

 

   One can also prove this by showing 𝑓′(𝑥) is bounded and thus 𝑓(𝑥) is Lipschitz.  

 

 

Def.  A function 𝑓: [𝑎, 𝑏] → ℝ is called a step function if there are finitely many 

points 𝑎 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 = 𝑏 such that 𝑓 is constant on each open 

interval (𝑡𝑖 , 𝑡𝑖+1) and 𝑓 takes on any real values at the 𝑡𝑖 ′𝑠.  

 

 

 

 

 

 

 

 

𝑡0                                          𝑡1                           𝑡3            𝑡4 

𝑦 = 𝑓(𝑡) a step function 
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Ex.  Every step function is of bounded variation.  𝑇𝑉(𝑓) is equal to the sum of all 

left and right hand “jumps” in the graph of 𝑓.  That is: 

          𝑇𝑉(𝑓) = ∑ (|𝑓(𝑡𝑖) − lim
𝑡→𝑡𝑖

+
𝑓(𝑡)| + |𝑓(𝑡𝑖) − lim

𝑡→𝑡𝑖
−

𝑓(𝑡)|)𝑛
𝑖=0 . 

 

 

Notice if 𝑐 ∈ [𝑎, 𝑏] and 𝑐 is not one of the endpoints of a partition 𝑃, we can 

create a refinement 𝑃′ of 𝑃 by adding 𝑐.   

 

Then by the triangle inequality:    𝑉(𝑓, 𝑃) ≤ 𝑉(𝑓, 𝑃′).  Here’s why.  

 

    The triangle inequality says |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|   for all 𝑎, 𝑏 ∈ ℝ. 

        |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| ≤ |𝑓(𝑥𝑖) − 𝑓(𝑐)| + |𝑓(𝑐) − 𝑓(𝑥𝑖−1)|  

 

         where 𝑎 = 𝑓(𝑥𝑖) − 𝑓(𝑐),       𝑏 = 𝑓(𝑐) − 𝑓(𝑥𝑖−1)     

                                    𝑎 + 𝑏 = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1). 

 

 

 

 

𝑥𝑖−1                      𝑐                         𝑥𝑖  

𝑦 = 𝑓(𝑥) 



8 
 

 

Lemma:  If 𝑓: [𝑎, 𝑏] → ℝ is of bounded variation, then 𝑓 is also bounded (i.e. 

there exists an 𝑀 ∈ ℝ+ such that |𝑓(𝑥)| ≤ 𝑀 for all 𝑥 ∈ [𝑎, 𝑏])  and satisfies:       

‖𝑓‖∞ ≤ |𝑓(𝑎)| + 𝑇𝑉(𝑓). 

 

Proof.  Let 𝑎 ≤ 𝑥 ≤ 𝑏, and set 𝑃 = {𝑎, 𝑥, 𝑏}. 

Then   |𝑓(𝑥) − 𝑓(𝑎)| ≤ 𝑉(𝑓, 𝑃) ≤ 𝑇𝑉(𝑓).  

 

By the triangle inequality 

              |𝑓(𝑥)| = |(𝑓(𝑥) − 𝑓(𝑎)) + 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓(𝑎)| + |𝑓(𝑎)|.  

 

So          |𝑓(𝑥)| ≤ 𝑇𝑉(𝑓) + |𝑓(𝑎)|     

 

     ⇒   sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥)| = ‖𝑓(𝑥)‖∞ ≤ |𝑓(𝑎)| + 𝑇𝑉(𝑓). 

 

Def.  𝑩𝑽[𝒂, 𝒃] = {the set of functions of bounded variation on [𝑎, 𝑏]}. 

 

𝐵𝑉[𝑎, 𝑏] is a vector space since if 𝑓, 𝑔 ∈ 𝐵𝑉[𝑎, 𝑏] then (𝑎𝑓 + 𝑏𝑔) ∈ 𝐵𝑉[𝑎, 𝑏] for 

and 𝑎, 𝑏 ∈ ℝ (we will see this shortly), and 𝑓(𝑥) = 0 ∈ 𝐵𝑉[𝑎, 𝑏]. 

Notice that 𝐵𝑉[𝑎, 𝑏] contains some subsets that are dense in 𝐶[𝑎, 𝑏].  For 

example, all polynomials on [𝑎, 𝑏] are of bounded variation and all  

polygonal functions on [𝑎, 𝑏] are of bounded variation.  Thus the closure of 

𝐵𝑉[𝑎, 𝑏] under the sup-norm (i.e. ‖𝑓(𝑥)‖∞ = sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥)|) contains 𝐶[𝑎, 𝑏]. 

But we saw that 𝑓(𝑥) = 𝑥𝑐𝑜𝑠 (
𝜋

2𝑥
)        𝑖𝑓    0 < 𝑥 ≤ 1    

                                         = 0                          𝑖𝑓     𝑥 = 0 

is continuous on [0,1], but not of bounded variation.   
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 Thus there exists a sequence of functions of bounded variation, for example a 

sequence of polynomials, that converges to 𝑓(𝑥) with the sup-norm.  Thus the 

normed linear space 𝐵𝑉[𝑎, 𝑏] with ‖𝑓(𝑥)‖∞ = sup
𝑎≤𝑥≤𝑏

|𝑓(𝑥)| , is not complete 

(and thus not a Banach space with this norm).  so if 𝐵𝑉[𝑎, 𝑏]  is going to be a 

Banach space, we will need to find a different norm.  The 𝑇𝑉(𝑓) almost works.      

 

        

 

Lemma:  Let 𝑓, 𝑔 ∈ 𝐵𝑉[𝑎, 𝑏] and 𝑐 ∈ ℝ.  Then 

a. 𝑇𝑉(𝑓) = 0 if and only if 𝑓 is constant. 

b. 𝑇𝑉(𝑐𝑓) = |𝑐|𝑇𝑉(𝑓) 

c. 𝑇𝑉(𝑓 + 𝑔) ≤ 𝑇𝑉(𝑓) + 𝑇𝑉(𝑔) 

d. 𝑇𝑉(|𝑓|) ≤ 𝑇𝑉(𝑓) 

e. 𝑇𝑉(𝑓[𝑎,𝑏]) = 𝑇𝑉(𝑓[𝑎,𝑐]) + 𝑇𝑉(𝑓[𝑐,𝑏]),   for  𝑎 ≤ 𝑐 ≤ 𝑏.  

 

 

 

 

 

 

𝐵𝑉[𝑎, 𝑏] 𝐶[𝑎, 𝑏] 

Step functions 

𝑓(𝑥) = 𝑥𝑐𝑜𝑠 (
𝜋

2𝑥
)        

polynomials 

Lipschitz functions 
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Proof of c.   

Let 𝑃 be any partition of [𝑎, 𝑏],  𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛}.  

 

𝑉(𝑓 + 𝑔, 𝑃) = ∑ |(𝑓 + 𝑔)(𝑥𝑖) − (𝑓 + 𝑔)(𝑥𝑖−1)|𝑛
𝑖=1   

                   ≤ ∑ |𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)|𝑛
𝑖=1 + ∑ |𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)|𝑛

𝑖=1  

                   = 𝑉(𝑓, 𝑃) + 𝑉(𝑔, 𝑃). 

Thus  sup
𝑃

𝑉(𝑓 + 𝑔, 𝑃) ≤ sup
𝑃

𝑉(𝑓, 𝑃) + sup
𝑃

𝑉(𝑔, 𝑃). 

Hence     𝑇𝑉(𝑓 + 𝑔) ≤ 𝑇𝑉(𝑓) + 𝑇𝑉(𝑔). 

 

𝑇𝑉(𝑓) is not a norm on 𝐵𝑉[𝑎, 𝑏] because 𝑇𝑉(𝑓[𝑎,𝑏]) = 0 does not imply that 

𝑓(𝑥) = 0  (only that 𝑓(𝑥) = constant).  However, we can create a norm on 

𝐵𝑉[𝑎, 𝑏] by 

                          ‖𝑓‖𝐵𝑉 = |𝑓(𝑎)| +  𝑇𝑉(𝑓[𝑎,𝑏]).  

 

From an earlier lemma we had 

                          ‖𝑓‖∞ ≤ |𝑓(𝑎)| + 𝑇𝑉(𝑓[𝑎,𝑏]) = ‖𝑓‖𝐵𝑉. 

Thus convergence in the 𝐵𝑉 norm, ‖𝑓‖𝐵𝑉, implies convergence in the uniform 

convergence norm, ‖𝑓‖∞.  Let’s see why. 

 

We say 𝑓𝑛 → 𝑓 in the 𝐵𝑉 norm if given any 𝜖 > 0, there exists an  𝑁 ∈ ℤ+ such 

that if 𝑛 ≥ 𝑁 then     ‖𝑓𝑛 − 𝑓‖𝐵𝑉 < 𝜖.  

 

But then ‖𝑓𝑛 − 𝑓‖∞ ≤ ‖𝑓𝑛 − 𝑓‖𝐵𝑉 < 𝜖.    

 

Thus the same 𝑁 that forces ‖𝑓𝑛 − 𝑓‖𝐵𝑉 < 𝜖 will also force ‖𝑓𝑛 − 𝑓‖∞ < 𝜖.  So 

𝑓𝑛 → 𝑓 in the sup-norm. 
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Theorem:  𝐵𝑉[𝑎, 𝑏] is complete under ‖𝑓‖𝐵𝑉 = |𝑓(𝑎)| +  𝑇𝑉(𝑓[𝑎,𝑏]). 

 

Proof.  Let {𝑓𝑛} be a Cauchy sequence in 𝐵𝑉[𝑎, 𝑏]. 

             Thus {𝑓𝑛} is also a Cauchy sequence under the uniform norm,  ‖𝑓‖∞.   

 

             That means for all 𝜖 > 0, there exists an 𝑁 ∈ ℤ+ such that if     

              𝑛, 𝑚 ≥ 𝑁  then  sup
𝑎≤𝑥≤𝑏

|𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥)| < 𝜖.  

 

              Thus for each 𝑥 ∈ [𝑎, 𝑏], the sequence of real number{𝑓𝑛(𝑥)}   

               is a Cauchy sequence and so converges to a real number, 𝑓(𝑥).  

 

               Now let’s show that 𝑓(𝑥) is first bounded and then of bounded variation. 

 

               Each 𝑓𝑛 is of bounded variation and thus must be bounded on [𝑎, 𝑏].  

 

                Since for 𝑚, 𝑛 ≥ 𝑁 we have sup
𝑎≤𝑥≤𝑏

|𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥)| < 𝜖.  

 

                if |𝑓𝑁(𝑥)| ≤ 𝐾, then  |𝑓𝑛(𝑥)| ≤ 𝐾 + 𝜖, for all 𝑛 ≥ 𝑁. 

                Hence |𝑓(𝑥)| ≤ 𝐾 + 𝜖, and 𝑓 must be bounded on [𝑎, 𝑏].  

 

                 Now we need to show that 𝑓(𝑥) ∈ 𝐵𝑉[𝑎, 𝑏].  

 

                 Let 𝑃 be any partition of [𝑎, 𝑏] and 𝜖 > 0. 

                 Choose 𝑁 such that if 𝑚, 𝑛 ≥ 𝑁 then ‖𝑓𝑛 − 𝑓𝑚‖𝐵𝑉 < 𝜖.  
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                   If 𝑓𝑛 → 𝑓 pointwise on [𝑎, 𝑏], then 𝑉(𝑓𝑛, 𝑃) → 𝑉(𝑓, 𝑃) for 

                   any partition 𝑃 (this is a HW problem).  

 

                   Thus for any 𝑛 ≥ 𝑁: 

      |𝑓(𝑎) − 𝑓𝑛(𝑎)| + 𝑉(𝑓 − 𝑓𝑛, 𝑃) = lim
𝑚→∞

[| 𝑓𝑛(𝑎) − 𝑓𝑚(𝑎)| + 𝑉(𝑓𝑚 − 𝑓𝑛, 𝑃)] 

                                                               ≤ sup
𝑚≥𝑁

‖𝑓𝑚 − 𝑓𝑛‖𝐵𝑉 ≤ 𝜖. 

 

                     This holds for all 𝑃 hence 

                                           ‖𝑓 − 𝑓𝑛‖𝐵𝑉 ≤ 𝜖   for all 𝑛 ≥ 𝑁. 

 

                     Thus 𝑓𝑛 → 𝑓 in ‖∙‖𝐵𝑉. 

 

                Also, (𝑓 − 𝑓𝑛) ∈ 𝐵𝑉[𝑎, 𝑏] and 𝑓𝑛 ∈ 𝐵𝑉[𝑎, 𝑏], hence 𝑓 ∈ 𝐵𝑉[𝑎, 𝑏]. 

   

                    So 𝐵𝑉[𝑎, 𝑏] with ‖𝑓‖𝐵𝑉 = |𝑓(𝑎)| +  𝑇𝑉(𝑓[𝑎,𝑏]) is complete. 

 

 

Notice that convergence in ‖∙‖∞ does not imply convergence in ‖∙‖𝐵𝑉.  Since 

𝑓(𝑥) = 𝑥𝑐𝑜𝑠 (
𝜋

2𝑥
)        𝑖𝑓    0 < 𝑥 ≤ 1    

           = 0                       𝑖𝑓     𝑥 = 0 

Is continuous on [0,1] we know from the Weierstrass approximation theorem 

that there is a sequence of polynomials, 𝑝𝑛(𝑥), that converges uniformly to 𝑓(𝑥). 

But each 𝑝𝑛(𝑥) ∈ 𝐵𝑉[0,1] and 𝑓(𝑥) ∉ 𝐵𝑉[0,1].  However,  𝐵𝑉[0,1] is complete 

under ‖∙‖𝐵𝑉 so {𝑝𝑛(𝑥)} can’t be a Cauchy sequence in 𝐵𝑉[0,1].    
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Theorem:  Fix 𝑓 ∈ 𝐵𝑉[𝑎, 𝑏] and let 𝑣(𝑥) = 𝑇𝑉(𝑓[𝑎,𝑥]), for 𝑎 ≤ 𝑥 ≤ 𝑏, and   

𝑣(𝑎) = 0.  Then both 𝑣 and 𝑣 − 𝑓 are increasing.  Thus 

                             𝑓 = 𝑣 − (𝑣 − 𝑓) 

Is the difference of two increasing functions. 

 

Proof.  For 𝑦 > 𝑥 we have: 

 

 

  𝑣(𝑦) − 𝑣(𝑥) =  𝑇𝑉(𝑓[𝑎,𝑦]) − 𝑇𝑉(𝑓[𝑎,𝑥]) 

            = 𝑇𝑉(𝑓[𝑥,𝑦]) ≥ |𝑓(𝑦) − 𝑓(𝑥)| ≥ 0. 

                Hence 𝑣 is increasing. 

 

   But 𝑣(𝑦) − 𝑣(𝑥) ≥ 𝑓(𝑦) − 𝑓(𝑥)  so 

        (𝑣(𝑦) − 𝑓(𝑦)) − (𝑣(𝑥) − 𝑓(𝑥)) ≥ 0. 

          Thus  𝑣 − 𝑓 is increasing. 

 

Since monotone functions are of bounded variation we get: 

 

Corollary (Jordan’s Theorem)  A function 𝑓: [𝑎, 𝑏] → ℝ is of bounded variation if 

and only if 𝑓 can be written as the difference of two increasing functions. 

     

 

 

 

𝑎                     𝑥             𝑦 

𝑦 = 𝑓(𝑥) 


