Functions of Bounded Variation: Jordan's Theorem

Def. Let f be a real valued function defined on a closed, bounded interval $[a, b]$ and P a partition $\{x_0, x_1, x_2, ..., x_k\}$ of $[a, b]$. The **variation of f with respect to is defined as:**

Def. The **total variation of** f on $[a, b]$ is defined as:

 $TV(f) = \sup\{V(f, P) | P \text{ a partition of } [a, b]\}.$

Def. A real valued function f on the closed, bounded interval $[a, b]$ is said to be of **bounded variation** if $TV(f) < \infty$.

Ex. If f is an increasing function on $[a, b]$, then f is of bounded variation and $TV(f) = f(b) - f(a).$

Given any partition P of $[a, b]$: $V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$ $i=1$

Since *f* is increasing
$$
f(x_i) - f(x_{i-1}) \ge 0
$$

so $|f(x_i) - f(x_{i-1})| = f(x_i) - f(x_{i-1}).$

$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|
$$

= $(f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \cdots + (f(x_k) - f(x_{k-1}))$
= $f(x_k) - f(x_0) = f(b) - f(a)$.

Thus
$$
TV(f) = \sup_{P} V(f, P) = f(b) - f(a)
$$
.

Def. A real valued function on $[a, b]$ is called **Lipschitz** if there exists a $c \in \mathbb{R}$ such that

$$
|f(x) - f(y)| \le c|x - y|, \text{ for all } x, y \in [a, b].
$$

Notice that any Lipschitz function is uniformly continuous on $[a, b]$.

We can see this by choosing $\delta = \frac{\epsilon}{g}$ $\frac{c}{c}$. Thus if $|x - y| < \delta = \frac{\epsilon}{\epsilon}$ $\frac{c}{c}$ then $|f(x) - f(y)| \le c|x - y| < c\delta = c\left(\frac{\epsilon}{c}\right)$ $\frac{c}{c}$) = ϵ .

In addition, if $f(x)$ is differentiable for all $x \in [a, b]$, with $|f'(x)| \leq k$, for some nonnegative real number k, then $f(x)$ is Lipschitz.

This follows from the Mean Value Theorem, since for any $x, y \in [a, b]$:

$$
\frac{f(x)-f(y)}{x-y} = f'(c)
$$
 for some $c \in (a, b)$.

Thus |

 $f(x) - f(y)$ $\frac{f(y)-f(y)}{x-y}$ | = |f'(c)| ≤ k.

Hence $|f(x) - f(y)| \le k|x - y|$, for all $x, y \in [a, b]$.

Note: $f(x)$ can be Lipschitz without being differentiable. For example $f(x) = |x|$ is Lipschitz on $[-1,1]$ but not differentiable at $x = 0$.

Ex. Let f be a Lipschitz function on $[a, b]$. Then f is of bounded variation on $[a, b]$ and $TV(f) \leq c(b - a)$ where c is the Lipschitz constant, $|f(u) - f(v)| \le c |u - v|$ for all $u, v \in [a, b]$.

Let
$$
P = \{x_0, x_1, x_2, ..., x_k\}
$$
 be any partition of [a, b]. Then:
\n
$$
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})| \le \sum_{i=1}^{k} c|x_i - x_{i-1}| = c|b - a|.
$$

Thus $c | b - a |$ is an upper bound for $V(f, P)$ and $TV(f) \leq c(b - a)$.

Note: Bounded variation does not imply a function is Lipschitz. For example, $f(x) = \sqrt{x}$, $0 < x \le 1$, is of bounded variation but is not Lipschitz since its derivative is unbounded.

Ex. Define f on $[0,1]$ by

$$
f(x) = x\cos(\frac{\pi}{2x}) \quad \text{if } 0 < x \le 1
$$
\n
$$
= 0 \qquad \qquad \text{if } x = 0.
$$

f is continuous on $[0,1]$, and therefore bounded, but does not have

bounded variation.

If we take the partition: $P_n = \{0, \frac{1}{2n}\}$ $\frac{1}{2n}, \frac{1}{2n}$ $\frac{1}{2n-1}, \frac{1}{2n}$ $\frac{1}{2n-2}, \ldots, \frac{1}{3}$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}$, 1} of $[0,1]$ $f(x_0) = 0$

$$
f(x_1) = \frac{1}{2n} \cos\left(\frac{\pi}{2\left(\frac{1}{2n}\right)}\right) = \frac{1}{2n} \cos(n\pi) = \pm \frac{1}{2n}
$$

\n
$$
f(x_2) = \frac{1}{2n-1} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-1}\right)}\right) = \frac{1}{2n-1} \cos\left(\frac{2n-1}{2}\pi\right) = 0
$$

\n
$$
f(x_3) = \frac{1}{2n-2} \cos\left(\frac{\pi}{2\left(\frac{1}{2n-2}\right)}\right) = \frac{1}{2n-2} \cos\left(\frac{2n-2}{2}\pi\right) = \pm \frac{1}{2n-2}
$$

\n
$$
f(x_4) = \frac{1}{2n-3} \cos\left(\frac{2n-3}{2}\pi\right) = 0
$$

\n:
\n:

So
$$
|f(x_1) - f(x_0)| = \frac{1}{2n}
$$

\n $|f(x_2) - f(x_1)| = \frac{1}{2n}$
\n $|f(x_3) - f(x_2)| = \frac{1}{2n-2}$
\n $|f(x_4) - f(x_3)| = \frac{1}{2n-2}$; etc.

Thus $V(f, P_n) = 1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} + \cdots + \frac{1}{n}$ $\frac{1}{n}$; which diverges as n goes to ∞ . So f is not of bounded variation.

Ex. Notice that if f is $C^1(a,b)$ (i.e. $f'(x)$ is continuous on (a,b)) and continous on $[a, b]$, then for any partition $P = {x_0, x_1, x_2, ..., x_k}$:

$$
f(x_i) - f(x_{i-1}) = \int_{x_{i-1}}^{x_i} f'
$$

by the fundamental theorem of Calculus.

Thus we have:

$$
|f(x_i) - f(x_{i-1})| = |\int_{x_{i-1}}^{x_i} f'| \le \int_{x_{i-1}}^{x_i} |f'|.
$$

So
$$
\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \leq \int_{a}^{b} |f'|.
$$

Thus $TV(f) \leq \int_a^b |f'|$ $\frac{d}{d}$ $|f'|$, and f is of bounded variation as long as $\int_a^b |f'|$ $\int_{a}^{b} |f'| < \infty.$ Ex. All polynomials are of bounded variation on $[a, b]$.

Let
$$
f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n
$$
 be a polynomial. $f(x) \in C^1(a, b)$.
 $f'(x) = a_1 + 2a_2 x + \dots + na_n x^{n-1}$.

$$
\int_{a}^{b} |a_{1} + 2a_{2}x + \dots + na_{n}x^{n-1}|dx
$$

\n
$$
\leq \int_{a}^{b} (|a_{1}| + 2|a_{2}||x| + \dots + n|a_{n}||x^{n-1}|)dx
$$

\n
$$
\leq (|a_{1}| + 2|a_{2}|(b - a) + \dots + n|a_{n}|(b - a)^{n-1})(b - a)
$$

\n
$$
< \infty.
$$

Thus $\int_a^b |f'| dx < \infty$ and $f(x)$ is of bounded variation.

One can also prove this by showing $f'(x)$ is bounded and thus $f(x)$ is Lipschitz.

Def. A function $f: [a, b] \to \mathbb{R}$ is called a **step function** if there are finitely many points $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ such that f is constant on each open interval (t_i,t_{i+1}) and f takes on any real values at the $t_i^{\,\prime}s.$

Ex. Every step function is of bounded variation. $TV(f)$ is equal to the sum of all left and right hand "jumps" in the graph of f . That is:

$$
TV(f) = \sum_{i=0}^{n} (|f(t_i) - \lim_{t \to t_i^+} f(t)| + |f(t_i) - \lim_{t \to t_i^-} f(t)|).
$$

Notice if $c \in [a, b]$ and c is not one of the endpoints of a partition P, we can create a refinement P' of P by adding c .

Then by the triangle inequality: $V(f, P) \leq V(f, P')$. Here's why.

The triangle inequality says $|a + b| \leq |a| + |b|$ for all $a, b \in \mathbb{R}$. $|f(x_i) - f(x_{i-1})| \le |f(x_i) - f(c)| + |f(c) - f(x_{i-1})|$

where $a = f(x_i) - f(c)$, $b = f(c) - f(x_{i-1})$ $a + b = f(x_i) - f(x_{i-1}).$

Lemma: If $f: [a, b] \to \mathbb{R}$ is of bounded variation, then f is also bounded (i.e. there exists an $M \in \mathbb{R}^+$ such that $|f(x)| \leq M$ for all $x \in [a, b]$) and satisfies: $||f||_{\infty} \leq |f(a)| + TV(f).$

Proof. Let $a \le x \le b$, and set $P = \{a, x, b\}.$ Then $|f(x) - f(a)| \le V(f, P) \le TV(f)$.

By the triangle inequality

$$
|f(x)| = |(f(x) - f(a)) + f(a)| \le |f(x) - f(a)| + |f(a)|.
$$

So $|f(x)| \leq TV(f) + |f(a)|$

$$
\Rightarrow \sup_{a \le x \le b} |f(x)| = ||f(x)||_{\infty} \le |f(a)| + TV(f).
$$

Def. $BV[a, b] = \{$ the set of functions of bounded variation on [a, b] $\}$.

 $BV[a, b]$ is a vector space since if $f, g \in BV[a, b]$ then $(af + bg) \in BV[a, b]$ for and $a, b \in \mathbb{R}$ (we will see this shortly), and $f(x) = 0 \in BV[a, b]$.

Notice that $BV[a, b]$ contains some subsets that are dense in $C[a, b]$. For example, all polynomials on $[a, b]$ are of bounded variation and all

polygonal functions on $[a, b]$ are of bounded variation. Thus the closure of $BV[a, b]$ under the sup-norm (i.e. $\|f(x)\|_\infty = \text{ sup}$ a≤x≤b $|f(x)|$) contains $C[a, b]$.

But we saw that $f(x) = x cos \left(\frac{\pi}{2} \right)$ $\left(\frac{\pi}{2x}\right)$ if $0 < x \leq 1$ $= 0$ $if \quad x = 0$

is continuous on $[0,1]$, but not of bounded variation.

Thus there exists a sequence of functions of bounded variation, for example a sequence of polynomials, that converges to $f(x)$ with the sup-norm. Thus the normed linear space $BV[a, b]$ with $\|f(x)\|_\infty = \text{ sup }$ a≤x≤b $|f(x)|$, is not complete (and thus not a Banach space with this norm). so if $BV[a, b]$ is going to be a Banach space, we will need to find a different norm. The $TV(f)$ almost works.

Lemma: Let $f, g \in BV[a, b]$ and $c \in \mathbb{R}$. Then

a. $TV(f) = 0$ if and only if f is constant. b. $TV(cf) = |c|TV(f)$ c. $TV(f + g) \leq TV(f) + TV(g)$ d. $TV(|f|) \leq TV(f)$ e. $TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]}),$ for $a \le c \le b$. Proof of c.

Let P be any partition of $[a, b]$, $P = {x_0, x_1, ..., x_n}.$

$$
V(f + g, P) = \sum_{i=1}^{n} |(f + g)(x_i) - (f + g)(x_{i-1})|
$$

\n
$$
\leq \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| + \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|
$$

\n
$$
= V(f, P) + V(g, P).
$$

Thus sup \boldsymbol{P} $V(f + g, P) \le \sup$ \boldsymbol{P} $V(f, P) + \sup$ \boldsymbol{P} $V(g, P).$ Hence $TV(f + g) \leq TV(f) + TV(g)$.

 $TV(f)$ is not a norm on $BV[a, b]$ because $TV(f_{[a, b]}) = 0$ does not imply that $f(x) = 0$ (only that $f(x) =$ constant). However, we can create a norm on $BV[a, b]$ by

$$
||f||_{BV} = |f(a)| + TV(f_{[a,b]}).
$$

From an earlier lemma we had

$$
||f||_{\infty} \leq |f(a)| + TV(f_{[a,b]}) = ||f||_{BV}.
$$

Thus convergence in the BV norm, $||f||_{BV}$, implies convergence in the uniform convergence norm, $||f||_{\infty}$. Let's see why.

We say $f_n \to f$ in the BV norm if given any $\epsilon > 0$, there exists an $\ N \in \mathbb{Z}^+$ such that if $n \geq N$ then $||f_n - f||_{BV} < \epsilon$.

But then $||f_n - f||_{\infty} \le ||f_n - f||_{BV} < \epsilon$.

Thus the same N that forces $|| f_n - f ||_{BV} < \epsilon$ will also force $|| f_n - f ||_{\infty} < \epsilon$. So $f_n \to f$ in the sup-norm.

Theorem: $BV[a, b]$ is complete under $||f||_{BV} = |f(a)| + TV(f_{[a,b]}).$

Proof. Let $\{f_n\}$ be a Cauchy sequence in $BV[a, b].$

Thus $\{f_n\}$ is also a Cauchy sequence under the uniform norm, $||f||_{\infty}$.

That means for all $\epsilon > 0$, there exists an $N \in \mathbb{Z}^+$ such that if

$$
n, m \ge N \text{ then } \sup_{a \le x \le b} |f_n(x) - f_m(x)| < \epsilon.
$$

Thus for each $x \in [a, b]$, the sequence of real number $\{f_n(x)\}$

is a Cauchy sequence and so converges to a real number, $f(x)$.

Now let's show that $f(x)$ is first bounded and then of bounded variation.

Each f_n is of bounded variation and thus must be bounded on $[a, b]$.

Since for $m, n \geq N$ we have sup a≤x≤b $|f_n(x) - f_m(x)| < \epsilon.$

if $|f_N(x)| \leq K$, then $|f_n(x)| \leq K + \epsilon$, for all $n \geq N$. Hence $|f(x)| \leq K + \epsilon$, and f must be bounded on [a, b].

Now we need to show that $f(x) \in BV[a, b]$.

Let P be any partition of $[a, b]$ and $\epsilon > 0$. Choose N such that if $m, n \geq N$ then $||f_n - f_m||_{BV} < \epsilon$. If $f_n \to f$ pointwise on [a, b], then $V(f_n, P) \to V(f, P)$ for any partition P (this is a HW problem).

Thus for any $n \geq N$: $|f(a) - f_n(a)| + V(f - f_n, P) = \lim_{m \to \infty} [|f_n(a) - f_m(a)| + V(f_m - f_n, P)]$ \leq sup $m \geq N$ $||f_m - f_n||_{BV} \leq \epsilon.$

This holds for all *hence*

$$
||f - f_n||_{BV} \le \epsilon \quad \text{for all } n \ge N.
$$

Thus $f_n \to f$ in $\lVert \cdot \rVert_{BV}$.

Also, $(f - f_n) \in BV[a, b]$ and $f_n \in BV[a, b]$, hence $f \in BV[a, b]$.

So
$$
BV[a, b]
$$
 with $||f||_{BV} = |f(a)| + TV(f_{[a,b]})$ is complete.

Notice that convergence in $\|\cdot\|_{\infty}$ does not imply convergence in $\|\cdot\|_{BV}$. Since $f(x) = x \cos \left(\frac{\pi}{2} \right)$ $\frac{\pi}{2x}$ if $0 < x \le 1$ $= 0$ if $x = 0$

Is continuous on [0,1] we know from the Weierstrass approximation theorem that there is a sequence of polynomials, $p_n(x)$, that converges uniformly to $f(x)$.

But each $p_n(x) \in BV[0,1]$ and $f(x) \notin BV[0,1]$. However, $BV[0,1]$ is complete under $\lVert \cdot \rVert_{BV}$ so $\{p_n(x)\}$ can't be a Cauchy sequence in $BV[0,1].$

Theorem: Fix $f \in BV[a, b]$ and let $v(x) = TV(f_{[a,x]})$, for $a \le x \le b$, and $v(a) = 0$. Then both v and $v - f$ are increasing. Thus

$$
f=v-(v-f)
$$

Is the difference of two increasing functions.

Since monotone functions are of bounded variation we get:

Corollary (Jordan's Theorem) A function $f:[a, b] \to \mathbb{R}$ is of bounded variation if and only if f can be written as the difference of two increasing functions.