Functions of Bounded Variation: Jordan's Theorem- HW Problems

1. Suppose that $f \in BV[a, b]$ and $[c, d] \subseteq [a, b]$. Show that $f \in BV[c, d]$ and the total variation of f on [c, d] is less than or equal to the total variation of f on [a, b].

- 2. Let $f, g \in BV[a, b]$ and $c \in \mathbb{R}$. Prove
- a. TV(f) = 0 if and only if f(x) is a constant function
- b. TV(cf) = |c|TV(f)
- c. $TV(|f|) \leq TV(f)$.

3. Suppose $\lim_{n\to\infty} f_n(x) = f(x)$ on [a, b] (ie f_n converges to f pointwise).

a. Show that if each $f_n(x)$ is increasing on [a, b] then so is f(x) (increasing means if y > x then $f(y) \ge f(x)$ for all $x, y \in [a, b]$).

b. Now suppose that instead of $f_n(x)$ being increasing, we assume $f_n \in BV[a, b]$. Show with an example that the pointwise limit of a sequence of functions of bounded variation on [a, b] need not be of bounded variation on [a, b].

4. Suppose $\lim_{n\to\infty} f_n(x) = f(x)$ on [a, b]. Show that for any partition P of [a, b], $\lim_{n\to\infty} V(f_n, P) = V(f, P)$ and if $TV(f_n) \le M \in \mathbb{R}$, for all n, then $TV(f) \le M$.

5. Prove that $f(x) = x^4 - 5x^3 + 4x^2 - 3x - 1$ is of bounded variation on [1,2] by writing f(x) as the difference of two increasing functions on [1,2].