Def. A trigonometric polynomnial is a function of the form:

$$T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$

where a_k and b_k are real numbers.

The degree of a trigonometric polynomial (trig polynomial) is the order, k, of the highest nonzero coefficient.

When working with trig polynomials it is useful to remember that :

sin(-x) = -sin(x) and cos(-x) = cos(x).

That is, sin(x) is an odd function and cos(x) is an even function.

Def. we say a function, f(x), is **periodic of period** p, if f(x + p) = f(x) for all $x \in \mathbb{R}$, and p is the smallest such number where that is true.

Notice that every trig polynomial belongs to $C^{2\pi}$.

 $C^{2\pi}$ is a vector space and a metric subspace of $C(\mathbb{R})$, bounded continuous functions on \mathbb{R} . $C^{2\pi}$ is complete with respect to the metric given by $d(f,g) = \sup_{x \in \mathbb{R}} |f(x) - g(x)|.$ Our goal is to prove an anologue to the Weierstrass approximation theorem for functions in $C^{2\pi}$.

Weierstrass's Second Theorem: Given $f \in C^{2\pi}$ and $\epsilon > 0$, there is a trig polynomial T such that $||f - T||_{\infty} < \epsilon$ (i.e. $\sup_{x \in \mathbb{R}} |f(x) - T(x)| < \epsilon$). Hence, there is a sequence of trig polynomials T_n such that $T_n \to f$ uniformly on \mathbb{R} .

Def. $f_1, f_2, ..., f_n$ are **linearly independent** if $a_1f_1 + \cdots + a_nf_n = 0$ implies that $a_1 = a_2 = \cdots = a_n = 0$.

Let
$$A = \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\}.$$

We will show that the functions in A are linearly independent.

First we define an inner product (or "dot" product) on $C^{2\pi}$ by

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

We say that two elements, $f, g \in C^{2\pi}$ are **orthogonal** (or perpendicular) if

$$< f, g >= \int_{-\pi}^{\pi} f(x)g(x)dx = 0.$$

Ex. If f(x) = 1 and $g(x) = \cos(nx)$, $n = 1,2,3 \dots$, then f(x) and g(x) are orthogonal.

$$< f, g > = \int_{-\pi}^{\pi} 1(\cos(nx)) dx = \frac{1}{n} \sin(nx) |_{x=-\pi}^{x=\pi} = 0.$$

Ex. All pairs of distinct elements in A are orthogonal. This follows from the trig identities:

$$(\sin(u))(\cos(v)) = \frac{1}{2}[\sin(u-v) + \sin(u+v)]$$

$$(\sin(u))(\sin(v)) = \frac{1}{2}[\cos(u-v) - \cos(u+v)]$$

$$(\cos(u))(\cos(v)) = \frac{1}{2}[\cos(u-v) + \cos(u+v)].$$

For example:

$$<\sin(mx), \cos(nx) >= \int_{-\pi}^{\pi} (\sin(mx)) (\cos(nx)) dx$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} (\sin((m-n)x)) + (\sin((m+n)x)) dx$$
$$= \frac{1}{2} \left(-\frac{\cos(m-n)x}{m-n} - \frac{\cos(m+n)x}{m+n} \right|_{x=-\pi}^{x=\pi} = 0.$$

Now we can show that

 $A = \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\}\$ is a linearly independent set of functions.

Suppose $f(x) = a_0 + a_1 \cos(x) + \dots + a_n \cos(nx) + b_1 \sin(x) + \dots + b_n \sin(nx)$ and for some $a_0, \dots, a_n, b_1, \dots, b_n$, f(x) = 0 for all $x \in \mathbb{R}$.

Then we have:

$$0 = < 0,0 > = < f, f >$$

$$= < a_0 + a_1 \cos(x) + \dots + a_n \cos(nx) + b_1 \sin(x) + \dots + b_n \sin(nx),$$

$$a_0 + a_1 \cos(x) + \dots + a_n \cos(nx) + b_1 \sin(x) + \dots + b_n \sin(nx) >$$

$$= a_0^2 < 1,1 > +a_1^2 < \cos(x), \cos(x) > + \dots + a_n^2 < \cos(nx), \cos(nx) >$$

$$+ b_1^2 < \sin(x), \sin(x) > + \dots + b_n^2 < \sin(nx), \sin(nx) >.$$

Since $\langle g, g \rangle \ge 0$ and $\langle g, g \rangle = 0$ if only if g = 0, $\langle f, f \rangle = 0$ implies that $a_0^2, ..., a_n^2, b_1^2, ..., b_n^2 = 0$. Thus $a_0, ..., a_n, b_1, ..., b_n = 0$, and the elements of A are linearly independent.

$$T(x) = a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$
 is called a trig polynomial

This is because T(x) can be written as p(sinx, cosx), where p(x, y) is a polynomial in x and y. This follows from the fact that cos(kx) and sin(kx) can be written as polynomials in cos(x) and sin(x). For example:

$$cos(2x) = 2cos^{2}(x) - 1$$

$$cos(3x) = cos(2x + x) = (cos(2x))(cos(x)) - (sin(2x))(sin(x)))$$

$$= (2cos^{2}(x) - 1)(cos(x)) - (2(sin(x))(cos(x)))(sin(x)))$$

$$= 2(cos^{3}(x)) - cos(x) - 2(sin^{2}(x))(cos(x))$$

$$= 2(cos^{3}(x)) - cos(x) - 2(1 - cos^{2}(x))(cos(x))$$

$$= 4(cos^{3}(x)) - 3cos(x).$$

By using $\cos(kx) + \cos[(k-2)x] = 2 [\cos((k-1)x)][\cos x]$ we can write $\cos(kx)$ as a polynomial in just $\cos(x)$.

$$sin(2x) = 2 sin(x) cos(x)$$

$$sin(3x) = sin(2x + x) = sin(x) (4cos^{2}(x) - 1).$$

By using sin[(k + 1)x] - sin[(k - 1)x] = 2(cos(kx)(sinx)) we can write sin(kx) as sin(x) times a polynomial of degree (k - 1) in cos(x).

Thus $\cos(kx)$ and $\sin(kx)$ can be written as polynomials of degree k in $\sin(x)$ and $\cos(x)$. Hence $T(x) = a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$ can be written as a polynomial of degree n in $\sin(x)$ and $\cos(x)$.

Conversely, any polynomial in sin(x) and cos(x) can be written in terms of $cos^{m}(x)$ and $(cos^{m-1}(x))(sin(x))$, and in turn $cos^{m}(x)$ and $(cos^{m-1}(x))(sin(x))$ can each be written in the form

$$a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx)).$$

We can now use the Weierstrass approximation theorem to help prove Weierstrass's second theorem.

First we need:

Lemma: Given an even function $f \in C^{2\pi}$ and $\epsilon > 0$, there is an even trig polynomial T such that $||f - T||_{\infty} < \epsilon$.

Proof: Let $f \in C^{2\pi}$. The values of f are determined by its values on $[-\pi, \pi]$. Since f is even, its values are determined by its values on $[0, \pi]$.

Let $x = \cos^{-1} y$, where $-1 \le y \le 1$ and $0 \le x \le \pi$. So $f(x) = f(\cos^{-1} y) = h(y)$, where h is continuous on $-1 \le y \le 1$.

By the Weierstrass approximation theorem there is a polynomial in y, p(y), such that

$$\sup_{-1 \le y \le 1} |h(y) - p(y)| < \epsilon \quad \text{or equivalently} \quad \sup_{-1 \le y \le 1} |f(\cos^{-1} y) - p(y)| < \epsilon.$$

But y = cos(x) so p(cos(x)) is a polynomial in cos(x) and we can find a trig polynomial T(x) = p(cos(x)).

$$\sup_{0\leq x\leq\pi}|f(x)-T(x)|<\epsilon.$$

Since f and T are even and have $f(x + 2\pi) = f(x)$ and $T(x + 2\pi) = T(x)$ $\sup_{x \in \mathbb{R}} |f(x) - T(x)| < \epsilon.$

Now we apply this lemma to prove:

Weierstrass's second theorem: Given $f \in C^{2\pi}$ and $\epsilon > 0$, there is a trig polynomial T such that $||f - T||_{\infty} < \epsilon$ (i.e. $\sup_{x \in \mathbb{R}} |f(x) - T(x)| < \epsilon$). Hence, there is a sequence of trig polynomials T_n such that $T_n \to f$ uniformly on \mathbb{R} .

Proof. Given $f \in C^{2\pi}$, both

$$f(x) + f(-x)$$
 and $(f(x) - f(-x))\sin(x)$

are even functions.

Thus by the previous lemma there are even trig polynomials T_1 and T_2 such that

$$f(x) + f(-x) = T_1(x) + e_1(x) \text{ and } (f(x) - f(-x)) \sin(x) = T_2(x) + e_2(x)$$

where $||e_1(x)||_{\infty} < \frac{\epsilon}{2}$ and $||e_2(x)||_{\infty} < \frac{\epsilon}{2}$.

Multiplying the first equation by $\sin^2(x)$ and the second by $\sin(x)$ and adding them we get:

$$(f(x) + f(-x))\sin^2 x = (\sin^2 x)T_1(x) + (\sin^2 x)e_1(x)$$
$$(f(x) - f(-x))\sin^2 x = (\sin(x)T_2(x) + (\sin(x)e_2(x))$$
$$2f(x)\sin^2 x = (\sin^2 x)T_1(x) + (\sin x)T_2(x) + (\sin^2 x)e_1(x) + (\sin x)e_2(x)$$

Dividing by 2 we get:

$$f(x)\sin^2 x = \frac{1}{2}[(\sin^2 x)T_1(x) + (\sin x)T_2(x)] + \frac{1}{2}[(\sin^2 x)e_1(x) + (\sin x)e_2(x)].$$

But $\frac{1}{2}[(\sin^2 x)T_1(x) + (\sin x)T_2(x)]$ is a trig polynomial, let's call it $T_3(x)$.

In addition

$$\sup_{x \in \mathbb{R}} \left| \frac{1}{2} [(\sin^2 x) e_1(x) + (\sin x) e_2(x)] \right| \le \sup_{x \in \mathbb{R}} \left| \frac{1}{2} (\sin^2 x) (e_1(x)) \right| +
\sup_{x \in \mathbb{R}} \left| \frac{1}{2} (\sin x) (e_2(x)) \right| \\
\le \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}$$

So
$$f(x)\sin^2 x = T_3(x) + e_3(x);$$
 (*) where $||e_3(x)||_{\infty} < \frac{\epsilon}{2}$.

If
$$f \in C^{2\pi}$$
 then so is $f\left(x - \frac{\pi}{2}\right)$. So
 $f\left(x - \frac{\pi}{2}\right)\sin^2 x = T_4(x) + e_4(x); \quad \text{where } \|e_4(x)\|_{\infty} < \frac{\epsilon}{2}$

Replacing $x + \frac{\pi}{2}$ for x in the above equation we get: $f(x)\sin^2(x + \frac{\pi}{2}) = T_5(x) + e_5(x); \text{ where } ||e_5(x)||_{\infty} < \frac{\epsilon}{2}.$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x) \text{ so we get:}$$
$$f(x)\cos^2(x) = T_5(x) + e_5(x). \quad (**)$$

Now we add the two earlier equations ((*) and (**)):

$$f(x)\sin^{2}(x) = T_{3}(x) + e_{3}(x)$$
$$\underline{f(x)\cos^{2}(x) = T_{5}(x) + e_{5}(x)}$$
$$f(x) = T_{6}(x) + e_{6}(x)$$

where
$$\sup_{x \in \mathbb{R}} |e_6(x)| = \sup_{x \in \mathbb{R}} |e_3(x) + e_5(x)| \le \sup_{x \in \mathbb{R}} |e_3(x)| + \sup_{x \in \mathbb{R}} |e_5(x)|$$

$$\le \qquad \frac{\epsilon}{2} \qquad + \qquad \frac{\epsilon}{2} \qquad = \epsilon.$$

So we have:

$$\sup_{x \in \mathbb{R}} |f(x) - T_6(x)| = \sup_{x \in \mathbb{R}} |e_6(x)| < \epsilon.$$

Thus $\|f - T\|_{\infty} < \epsilon$.

Fourier Series

Given $f \in C^{2\pi}$ we can express it as the uniform limit of a sequence of trigonometric polynomials, $T_n(x)$, i.e., $T_n(x)$ converges uniformly to f(x). Now we would like, at least in some cases, to calculate a sequence $T_n(x)$ where this is the case. Here we will calculate the **Fourier series** for f(x).

We will start off writing:

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

where the RHS is the Fourier series for f(x). We write \sim instead of = because we don't know if the RHS will converge (pointwise) to the value of f at each $x \in \mathbb{R}$.

How do we calculate a_i , b_i ?

If we multiply both sides by sin(mx) and integrate we get:

$$\int_{-\pi}^{\pi} f(x) \sin(mx) dx$$

= $\int_{-\pi}^{\pi} \sin(mx) \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)) \right] dx$
= $\int_{-\pi}^{\pi} \frac{a_0}{2} \sin(mx) dx$
+ $\int_{-\pi}^{\pi} \sin(mx) \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)) dx$

Now assuming for the moment that we can integrate term by term:

$$= \int_{-\pi}^{\pi} \frac{a_0}{2} \sin(mx) dx + \sum_{k=1}^{\infty} \int_{-\pi}^{\pi} (\sin(mx)) (a_k \cos(kx) + b_k \sin(kx)) dx$$

$$= b_m \int_{-\pi}^{\pi} \sin^2(mx) \, dx = b_m \int_{-\pi}^{\pi} \left(\frac{1}{2} - \frac{1}{2}\cos(2mx)\right) dx = b_m \pi.$$

So we have: $b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(mx) dx.$

Similarly we get: $a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) dx$. (with $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$).