Trigonometric Polynomials

Def. A **trigonometric polynomnial** is a function of the form:

$$
T(x) = a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))
$$

where a_k and b_k are real numbers.

The degree of a trigonometric polynomial (trig polynomial) is the order, k , of the highest nonzero coefficient.

When working with trig polynomials it is useful to remember that :

 $sin(-x) = -sin(x)$ and $cos(-x) = cos(x)$.

That is, $sin(x)$ is an odd function and $cos(x)$ is an even function.

Def. we say a function, $f(x)$, is **periodic of period p**, if $f(x + p) = f(x)$ for all $x \in \mathbb{R}$, and p is the smallest such number where that is true.

Notice that every trig polynomial belongs to $C^{2\pi}$.

 $C^{2\pi}$ is a vector space and a metric subspace of $C(\mathbb{R})$, bounded continuous functions on \mathbb{R} . $\mathcal{C}^{2\pi}$ is complete with respect to the metric given by $d(f, g) = \sup$ ∈ℝ $|f(x) - g(x)|$.

Our goal is to prove an anologue to the Weierstrass approximation theorem for functions in $\mathcal{C}^{2\pi}$.

Weierstrass's Second Theorem: Given $f\in \mathcal{C}^{2\pi}$ and $\epsilon>0$, there is a trig polynomial T such that $||f - T||_{\infty} < \epsilon$ (i.e. $\sup |f(x) - T(x)| < \epsilon$). Hence, there is a sequence ∈ℝ of trig polynomials T_n such that $T_n\to f$ uniformly on $\R.$

Def. $f_1, f_2, ..., f_n$ are **linearly independent** if $a_1 f_1 + \cdots + a_n f_n = 0$ implies that $a_1 = a_2 = \cdots = a_n = 0$.

Let
$$
A = \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\}.
$$

We will show that the functions in A are linearly independent.

First we define an inner product (or "dot" product) on $C^{2\pi}$ by

$$
\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.
$$

We say that two elements, f , $g \in C^{2\pi}$ are **orthogonal** (or perpendicular) if

$$
\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx = 0.
$$

Ex. If $f(x) = 1$ and $g(x) = cos(nx)$, $n = 1,2,3$..., then $f(x)$ and $g(x)$ are orthogonal.

$$
\langle f, g \rangle = \int_{-\pi}^{\pi} 1\big(cos(nx)\big)dx = \frac{1}{n}\sin(nx)\big|_{x=-\pi}^{x=\pi} = 0.
$$

Ex. All pairs of distinct elements in A are orthogonal. This follows from the trig identities:

$$
(\sin(u))(\cos(v)) = \frac{1}{2} [\sin(u - v) + \sin(u + v)]
$$

\n
$$
(\sin(u))(\sin(v)) = \frac{1}{2} [\cos(u - v) - \cos(u + v)]
$$

\n
$$
(\cos(u))(\cos(v)) = \frac{1}{2} [\cos(u - v) + \cos(u + v)].
$$

For example:

$$
\langle \sin(mx), \cos(nx) \rangle = \int_{-\pi}^{\pi} (\sin(mx)) (\cos(nx)) dx
$$

= $\frac{1}{2} \int_{-\pi}^{\pi} (\sin((m-n)x)) + (\sin((m+n)x)) dx$
= $\frac{1}{2} \left(-\frac{\cos(m-n)x}{m-n} - \frac{\cos(m+n)x}{m+n} \right) \Big|_{x=-\pi}^{x=\pi} = 0.$

Now we can show that

 $A = \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx)\}\$ is a linearly independent set of functions.

Suppose $f(x) = a_0 + a_1 \cos(x) + \cdots + a_n \cos(nx) + b_1 \sin(x) + \cdots + b_n \sin(nx)$ and for some $a_0, ..., a_n, b_1, ..., b_n$, $f(x) = 0$ for all $x \in \mathbb{R}$.

Then we have:

$$
0 = <0, 0> =
$$

=< $a_0 + a_1 \cos(x) + \dots + a_n \cos(nx) + b_1 \sin(x) + \dots + b_n \sin(nx)$,
 $a_0 + a_1 \cos(x) + \dots + a_n \cos(nx) + b_1 \sin(x) + \dots + b_n \sin(nx) >$
= $a_0^2 < 1, 1> +a_1^2 < \cos(x), \cos(x) > + \dots + a_n^2 < \cos(nx), \cos(nx) >$
+ $b_1^2 < \sin(x), \sin(x) > + \dots + b_n^2 < \sin(nx), \sin(nx) >$.

Since $\langle g, g \rangle \ge 0$ and $\langle g, g \rangle = 0$ if only if $g = 0$, $< f, f > = 0$ implies that $a_0^2, ..., a_n^2, b_1^2, ..., b_n^2 = 0$. Thus a_0 , , a_n , b_1 , ..., $b_n = 0$, and the elements of A are linearly independent.

$$
T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))
$$
 is called a trig polynomial.

This is because $T(x)$ can be written as $p(sinx, cos x)$, where $p(x, y)$ is a polynomial in x and y. This follows from the fact that $cos(kx)$ and $sin(kx)$ can be written as polynomials in $cos(x)$ and $sin(x)$. For example:

$$
\cos(2x) = 2\cos^2(x) - 1
$$

\n
$$
\cos(3x) = \cos(2x + x) = (\cos(2x))(\cos(x)) - (\sin(2x))(\sin(x))
$$

\n
$$
= (2\cos^2(x) - 1)(\cos(x)) - (2(\sin(x))(\cos(x)))(\sin(x)))
$$

\n
$$
= 2(\cos^3(x)) - \cos(x) - 2(\sin^2(x))(\cos(x))
$$

\n
$$
= 2(\cos^3(x)) - \cos(x) - 2(1 - \cos^2(x))(\cos(x))
$$

\n
$$
= 4(\cos^3(x)) - 3\cos(x).
$$

By using $\cos(kx) + \cos[(k-2)x] = 2 [\cos((k-1)x)][\cos x]$ we can write $cos(kx)$ as a polynomial in just $cos(x)$.

$$
\sin(2x) = 2\sin(x)\cos(x)
$$

\n
$$
\sin(3x) = \sin(2x + x) = \sin(x) (4\cos^{2}(x) - 1).
$$

By using $\sin[(k + 1)x] - \sin[(k - 1)x] = 2(\cos(kx)(\sin x))$ we can write $sin(kx)$ as $sin(x)$ times a polynomial of degree $(k - 1)$ in $cos(x)$.

Thus $cos(kx)$ and $sin(kx)$ can be written as polynomials of degree k in $sin(x)$ and cos(x). Hence $T(x) = a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$ $\binom{n}{k-1}(a_k\cos(kx)+b_k\sin(kx))$ can be written as a polynomial of degree n in $sin(x)$ and $cos(x)$.

Conversely, any polynomial in $sin(x)$ and $cos(x)$ can be written in terms of $\cos^m(x)$ and $(\cos^{m-1}(x))(\sin(x))$, and in turn $\cos^m(x)$ and $(\cos^{m-1}(x))(\sin(x))$ can each be written in the form

$$
a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx)).
$$

We can now use the Weierstrass approximation theorem to help prove Weierstrass's second theorem.

First we need:

Lemma: Given an even function $f \in C^{2\pi}$ and $\epsilon > 0$, there is an even trig polynomial T such that $||f - T||_{\infty} < \epsilon$.

Proof: Let $f \in C^{2\pi}$. The values of f are determined by its values on $[-\pi,\pi]$. Since f is even, its values are determined by its values on $[0, \pi]$.

Let $x = \cos^{-1} y$, where $-1 \le y \le 1$ and $0 \le x \le \pi$. So $f(x) = f(\cos^{-1} y) = h(y)$, where h is continuous on $-1 \le y \le 1$.

By the Weierstrass approximation theorem there is a polynomial in y, $p(y)$, such that

$$
\sup_{-1 \le y \le 1} |h(y) - p(y)| < \epsilon \quad \text{or equivalently} \quad \sup_{-1 \le y \le 1} |f(\cos^{-1} y) - p(y)| < \epsilon.
$$

But $y = cos(x)$ so $p(cos(x))$ is a polynomial in $cos(x)$ and we can find a trig polynomial $T(x) = p(\cos(x))$.

Thus:
$$
\sup_{0 \le x \le \pi} |f(x) - T(x)| < \epsilon
$$
.

Since f and T are even and have $f(x + 2\pi) = f(x)$ and $T(x + 2\pi) = T(x)$ sup and the sup-∈ℝ $|f(x) - T(x)| < \epsilon.$

Now we apply this lemma to prove:

Weierstrass's second theorem: Given $f\in \mathcal{C}^{2\pi}$ and $\epsilon>0$, there is a trig polynomial T such that $||f - T||_{\infty} < \epsilon$ (i.e. \sup ∈ℝ $|f(x) - T(x)| < \epsilon$). Hence, there is a sequence of trig polynomials T_n such that $T_n \to f$ uniformly on \mathbb{R} .

Proof. Given $f \in C^{2\pi}$, both

$$
f(x) + f(-x)
$$
 and $(f(x) - f(-x))\sin(x)$

are even functions.

Thus by the previous lemma there are even trig polynomials T_1 and T_2 such that $f(x) + f(-x) = T_1(x) + e_1(x)$ and $(f(x) - f(-x)) \sin(x) = T_2(x) + e_2(x)$ where $\|e_1(x)\|_{\infty} < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ and $\|e_2(x)\|_{\infty} < \frac{\epsilon}{2}$ $\frac{2}{2}$.

Multiplying the first equation by $\sin^2(x)$ and the second by $\sin(x)$ and adding them we get:

$$
(f(x) + f(-x)) \sin^2 x = (\sin^2 x) T_1(x) + (\sin^2 x) e_1(x)
$$

$$
(f(x) - f(-x)) \sin^2 x = (\sin(x) T_2(x) + (\sin(x) e_2(x))
$$

$$
2f(x) \sin^2 x = (\sin^2 x) T_1(x) + (\sin x) T_2(x) + (\sin^2 x) e_1(x) + (\sin x) e_2(x).
$$

Dividing by 2 we get:

$$
f(x)\sin^2 x = \frac{1}{2} [(\sin^2 x)T_1(x) + (\sin x)T_2(x)]
$$

$$
+ \frac{1}{2} [(\sin^2 x)e_1(x) + (\sin x)e_2(x)].
$$

But $\frac{1}{2}$ $\frac{1}{2}$ $[(\sin^2 x)T_1(x) + (\sin x)T_2(x)]$ is a trig polynomial, let's call it $T_3(x)$.

In addition

$$
\sup_{x \in \mathbb{R}} \left| \frac{1}{2} \left[(\sin^2 x) e_1(x) + (\sin x) e_2(x) \right] \right| \le \sup_{x \in \mathbb{R}} \left| \frac{1}{2} (\sin^2 x) (e_1(x)) \right| + \sup_{x \in \mathbb{R}} \left| \frac{1}{2} (\sin x) (e_2(x)) \right|
$$

$$
\le \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}.
$$

So
$$
f(x) \sin^2 x = T_3(x) + e_3(x)
$$
; (*) where $||e_3(x)||_{\infty} < \frac{\epsilon}{2}$.

If
$$
f \in C^{2\pi}
$$
 then so is $f\left(x - \frac{\pi}{2}\right)$. So
\n
$$
f\left(x - \frac{\pi}{2}\right) \sin^2 x = T_4(x) + e_4(x); \text{ where } ||e_4(x)||_{\infty} < \frac{\epsilon}{2}
$$

Replacing $x + \frac{\pi}{2}$ $\frac{\pi}{2}$ for x in the above equation we get: $f(x)$ sin² $(x + \frac{\pi}{2})$ $\frac{\pi}{2}$) = $T_5(x) + e_5(x)$; where $||e_5(x)||_{\infty} < \frac{\epsilon}{2}$ $\frac{2}{2}$.

$$
\sin\left(x + \frac{\pi}{2}\right) = \cos(x) \text{ so we get:}
$$

$$
f(x)\cos^2(x) = T_5(x) + e_5(x). \qquad (*)
$$

.

Now we add the two earlier equations ($(*)$ and $(**)$):

$$
f(x)\sin^2(x) = T_3(x) + e_3(x)
$$

$$
f(x)\cos^2(x) = T_5(x) + e_5(x)
$$

$$
f(x) = T_6(x) + e_6(x)
$$

where
$$
\sup_{x \in \mathbb{R}} |e_6(x)| = \sup_{x \in \mathbb{R}} |e_3(x) + e_5(x)| \le \sup_{x \in \mathbb{R}} |e_3(x)| + \sup_{x \in \mathbb{R}} |e_5(x)|
$$

\n $\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

So we have:

$$
\sup_{x \in \mathbb{R}} |f(x) - T_6(x)| = \sup_{x \in \mathbb{R}} |e_6(x)| < \epsilon.
$$
\nThus, $||f - T|| < \epsilon$.

Thus $||f - T||_{\infty} < \epsilon$.

Fourier Series

Given $f \in \mathcal{C}^{2\pi}$ we can express it as the uniform limit of a sequence of trigonometric polynomials, $T_n(x)$, i.e., $T_n(x)$ converges uniformly to $f(x)$. Now we would like, at least in some cases, to calculate a sequence $T_n(x)$ where this is the case. Here we will calculate the **Fourier series** for $f(x)$.

We will start off writing:

$$
f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))
$$

where the RHS is the Fourier series for $f(x)$. We write ~ instead of = because we don't know if the RHS will converge (pointwise) to the value of f at each $x \in \mathbb{R}$.

How do we calculate a_i , b_i ?

If we multiply both sides by $sin(mx)$ and integrate we get:

$$
\int_{-\pi}^{\pi} f(x) \sin(mx) dx
$$

=
$$
\int_{-\pi}^{\pi} \sin(mx) \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)) \right] dx
$$

=
$$
\int_{-\pi}^{\pi} \frac{a_0}{2} \sin(mx) dx
$$

+
$$
\int_{-\pi}^{\pi} \sin(mx) \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)) dx
$$

Now assuming for the moment that we can integrate term by term:

$$
= \int_{-\pi}^{\pi} \frac{a_0}{2} \sin(mx) dx
$$

+ $\sum_{k=1}^{\infty} \int_{-\pi}^{\pi} (\sin(mx)) (a_k \cos(kx) + b_k \sin(kx)) dx$

$$
= b_m \int_{-\pi}^{\pi} \sin^2(mx) \, dx = b_m \int_{-\pi}^{\pi} \left(\frac{1}{2} - \frac{1}{2} \cos(2mx) \right) dx = b_m \pi.
$$

So we have: 1 $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(mx) dx.$

Similarly we get: $a_m = \frac{1}{\pi}$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) dx.$

(with $a_0 = \frac{1}{\pi}$ $\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx$ $\int_{-\pi} f(x) dx$.