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                                         Trigonometric Polynomials 

 

Def.  A trigonometric polynomnial is a function of the form: 

                     𝑇(𝑥) = 𝑎0 + ∑ (𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))𝑛
𝑘=1  

         where 𝑎𝑘 and 𝑏𝑘  are real numbers. 

The degree of a trigonometric polynomial (trig polynomial) is the order, 𝑘, of the 

highest nonzero coefficient. 

 

When working with trig polynomials it is useful to remember that : 

               sin(−𝑥) = −sin(𝑥)     and     𝑐𝑜𝑠(−𝑥) = cos(𝑥). 

That is, sin(𝑥) is an odd function and cos(𝑥) is an even function. 

 

Def.  we say a function, 𝑓(𝑥), is periodic of period 𝒑, if 𝑓(𝑥 + 𝑝) = 𝑓(𝑥) for all        

𝑥 ∈ ℝ, and 𝑝 is the smallest such number where that is true. 
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Ex.    𝑓(𝑥) = cos(2𝑥)  has a period of 𝜋. 

 

 

 

 

Def.  𝐶2𝜋 = {𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥), 𝑥 ∈ ℝ}. 

 

 

 

 

 

 

 

Notice that every trig polynomial belongs to 𝐶2𝜋. 

 

𝐶2𝜋 is a vector space and a metric subspace of 𝐶(ℝ), bounded continuous functions 

on ℝ.  𝐶2𝜋 is complete with respect to the metric given by                                           

𝑑(𝑓, 𝑔) = sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑔(𝑥)|. 

 

   −2𝜋                         −𝜋                             0                           𝜋                              2𝜋 

𝑦 = cos(2𝑥) 

                 −2𝜋                          −𝜋                                𝜋                              2𝜋                           

𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) 
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Our goal is to prove an anologue to the Weierstrass approximation theorem for 

functions in 𝐶2𝜋. 

 

Weierstrass’s Second Theorem:  Given 𝑓 ∈ 𝐶2𝜋 and 𝜖 > 0, there is a trig polynomial 𝑇 

such that ‖𝑓 − 𝑇‖∞ < 𝜖   (i.e.  sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑇(𝑥)| < 𝜖).  Hence, there is a sequence 

of trig polynomials 𝑇𝑛 such that 𝑇𝑛 → 𝑓 uniformly on ℝ. 

 

Def.  𝑓1, 𝑓2, … , 𝑓𝑛   are linearly independent if 𝑎1𝑓1 + ⋯ + 𝑎𝑛𝑓𝑛 = 0 implies that  

𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 0 . 

 

Let 𝐴 = {1, cos(𝑥) , sin(𝑥) , cos(2𝑥) , sin(2𝑥) , … , cos(𝑛𝑥) , sin(𝑛𝑥)}. 

We will show that the functions in 𝐴 are linearly independent. 

 

First we define an inner product (or “dot” product) on 𝐶2𝜋 by 

                                  < 𝒇, 𝒈 >= ∫ 𝒇(𝒙)𝒈(𝒙)𝒅𝒙
𝝅

−𝝅
. 

 

We say that two elements, 𝑓, 𝑔 ∈ 𝐶2𝜋 are orthogonal (or perpendicular) if  

                                   < 𝑓, 𝑔 >= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0
𝜋

−𝜋
.  

 

 

Ex.  If 𝑓(𝑥) = 1 and 𝑔(𝑥) = cos(𝑛𝑥),  𝑛 = 1,2,3 …, then 𝑓(𝑥) and 𝑔(𝑥) are 

orthogonal.  

 

                       < 𝑓, 𝑔 >= ∫ 1(𝑐𝑜𝑠(𝑛𝑥))𝑑𝑥 =
1

𝑛
sin(𝑛𝑥) |𝑥=−𝜋

𝑥=𝜋 = 0
𝜋

−𝜋
.         
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Ex.  All pairs of distinct elements in 𝐴 are orthogonal.  This follows from the trig 

identities:   

        (sin(𝑢))(cos(𝑣)) =
1

2
[sin(𝑢 − 𝑣) + sin(𝑢 + 𝑣)] 

         (sin(𝑢))(sin(𝑣)) =
1

2
[cos(𝑢 − 𝑣) − cos(𝑢 + 𝑣)] 

        (cos(𝑢))(cos(𝑣)) =
1

2
[cos(𝑢 − 𝑣) + cos(𝑢 + 𝑣)]. 

For example: 

 < sin(𝑚𝑥) , cos(𝑛𝑥) >= ∫ (sin(𝑚𝑥))(𝑐𝑜𝑠(𝑛𝑥))𝑑𝑥
𝜋

−𝜋

 

                                           =
1

2
∫ (sin((𝑚 − 𝑛)𝑥)) + (𝑠𝑖𝑛((𝑚 + 𝑛)𝑥))𝑑𝑥

𝜋

−𝜋
 

                                           = 
1

2
(−

cos(𝑚−𝑛)𝑥

𝑚−𝑛
−

cos(𝑚+𝑛)𝑥

𝑚+𝑛
|𝑥=−𝜋

𝑥=𝜋  = 0. 

 

Now we can show that                                                                                   

𝐴 = {1, cos(𝑥) , sin(𝑥) , cos(2𝑥) , sin(2𝑥) , … , cos(𝑛𝑥) , sin(𝑛𝑥)} is a linearly 

independent set of functions.   

 

Suppose 𝑓(𝑥) = 𝑎0 + 𝑎1 cos(𝑥) + ⋯ + 𝑎𝑛 cos(𝑛𝑥) + 𝑏1 sin(𝑥) + ⋯ + 𝑏𝑛 sin(𝑛𝑥) 

and for some 𝑎0, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛,  𝑓(𝑥) = 0 for all 𝑥 ∈ ℝ.  

 

Then we have: 

0 =< 0,0 >=< 𝑓, 𝑓 >   

   =< 𝑎0 + 𝑎1 cos(𝑥) + ⋯ + 𝑎𝑛 cos(𝑛𝑥) + 𝑏1 sin(𝑥) + ⋯ + 𝑏𝑛 sin(𝑛𝑥), 

𝑎0 + 𝑎1 cos(𝑥) + ⋯ + 𝑎𝑛 cos(𝑛𝑥) + 𝑏1 sin(𝑥) + ⋯ + 𝑏𝑛 sin(𝑛𝑥) > 

  = 𝑎0
2 < 1,1 > +𝑎1

2 < cos(𝑥) , cos(𝑥) > + ⋯ + 𝑎𝑛
2 < cos(𝑛𝑥) , cos(𝑛𝑥) > 

              +𝑏1
2 < sin(𝑥) , sin(𝑥) > + ⋯ + 𝑏𝑛

2 < sin(𝑛𝑥) , sin(𝑛𝑥) >. 
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Since < 𝑔, 𝑔 >≥ 0 and  < 𝑔, 𝑔 > = 0 if only if 𝑔 = 0, 

< 𝑓, 𝑓 > = 0 implies that 𝑎0
2, … , 𝑎𝑛

2, 𝑏1
2, … 𝑏𝑛

2 = 0. 

Thus 𝑎0,   , 𝑎𝑛, 𝑏1, … , 𝑏𝑛 = 0,  and the elements of 𝐴 are linearly independent. 

 

 

𝑇(𝑥) = 𝑎0 + ∑ (𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))𝑛
𝑘=1  is called a trig polynomial.   

This is because 𝑇(𝑥) can be written as 𝑝(𝑠𝑖𝑛𝑥, 𝑐𝑜𝑠𝑥), where 𝑝(𝑥, 𝑦) is a polynomial in 

𝑥 and 𝑦.  This follows from the fact that cos(𝑘𝑥) and sin(𝑘𝑥) can be written as 

polynomials in cos(𝑥) and sin(𝑥).  For example: 

 

cos(2𝑥) = 2𝑐𝑜𝑠2(𝑥) − 1  

cos(3𝑥) = cos(2𝑥 + 𝑥) = (cos(2𝑥))(cos(𝑥)) − (sin(2𝑥))(sin(𝑥))   

                = (2𝑐𝑜𝑠2(𝑥) − 1)(cos(𝑥)) − (2 (sin(𝑥))(cos(𝑥)))(sin(𝑥))) 

                = 2(𝑐𝑜𝑠3(𝑥)) − cos(𝑥) − 2(𝑠𝑖𝑛2(𝑥))(cos(𝑥))  

                 = 2(𝑐𝑜𝑠3(𝑥)) − cos(𝑥) − 2(1 − 𝑐𝑜𝑠2(𝑥))(cos(𝑥)) 

                 = 4(𝑐𝑜𝑠3(𝑥)) − 3 cos(𝑥).  

 

By using cos(𝑘𝑥) + cos[(𝑘 − 2) 𝑥] = 2 [cos((𝑘 − 1) 𝑥)][𝑐𝑜𝑠𝑥]  we can write 

cos(𝑘𝑥) as a polynomial in just cos(𝑥). 

 

 

sin(2𝑥) = 2 sin(𝑥) cos(𝑥)  

sin(3𝑥) = sin(2𝑥 + 𝑥) = sin(𝑥) (4𝑐𝑜𝑠2(𝑥) − 1) .  

 

By using sin[(𝑘 + 1) 𝑥] − sin [(𝑘 − 1) 𝑥] = 2(cos (𝑘𝑥)(𝑠𝑖𝑛𝑥)) we can write 

sin(𝑘𝑥) as sin(𝑥) times a polynomial of degree (𝑘 − 1) in cos(𝑥). 
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Thus cos(𝑘𝑥) and sin(𝑘𝑥) can be written as polynomials of degree 𝑘 in sin(𝑥) and 

cos(𝑥).  Hence 𝑇(𝑥) = 𝑎0 + ∑ (𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))𝑛
𝑘=1  can be written as a 

polynomial of degree 𝑛 in sin(𝑥) and cos(𝑥). 

Conversely, any polynomial in sin(𝑥) and cos(𝑥) can be written in terms of  

cos𝑚(𝑥) and (cos𝑚−1(𝑥))(sin(𝑥)), and in turn cos𝑚(𝑥) and (cos𝑚−1(𝑥))(sin(𝑥)) 
can each be written in the form  

                                𝑎0 + ∑ (𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))𝑛
𝑘=1  . 

 

We can now use the Weierstrass approximation theorem to help prove Weierstrass’s 

second theorem. 

 

First we need: 

Lemma:  Given an even function  𝑓 ∈ 𝐶2𝜋 and 𝜖 > 0, there is an even trig polynomial 

𝑇 such that ‖𝑓 − 𝑇‖∞ < 𝜖.     

 

Proof:  Let  𝑓 ∈ 𝐶2𝜋.  The values of 𝑓 are determined by its values on [−𝜋, 𝜋].  Since 𝑓 

is even, its values are determined by its values on [0, 𝜋]. 

 

Let 𝑥 = cos−1 𝑦, where −1 ≤ 𝑦 ≤ 1 and 0 ≤ 𝑥 ≤ 𝜋. 

So 𝑓(𝑥) = 𝑓(cos−1 𝑦) = ℎ(𝑦),  where ℎ is continuous on −1 ≤ 𝑦 ≤ 1. 

 

By the Weierstrass approximation theorem there is a polynomial in 𝑦, 𝑝(𝑦), such that  

          sup
−1≤𝑦≤1

|ℎ(𝑦) − 𝑝(𝑦)| < 𝜖   or equivalently  sup
−1≤𝑦≤1

|𝑓(cos−1 𝑦) − 𝑝(𝑦)| < 𝜖. 

 

But 𝑦 = cos(𝑥) so 𝑝(cos(𝑥)) is a polynomial in cos(𝑥) and we can find a trig 

polynomial 𝑇(𝑥) = 𝑝(cos(𝑥)).   
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         Thus:                        sup
0≤𝑥≤𝜋

|𝑓(𝑥) − 𝑇(𝑥)| < 𝜖. 

Since 𝑓 and 𝑇 are even and have 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) and 𝑇(𝑥 + 2𝜋) = 𝑇(𝑥) 

                                             sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑇(𝑥)| < 𝜖. 

 

Now we apply this lemma to prove: 

Weierstrass’s second theorem:  Given 𝑓 ∈ 𝐶2𝜋 and 𝜖 > 0, there is a trig polynomial 𝑇 

such that   ‖𝑓 − 𝑇‖∞ < 𝜖   (i.e.  sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑇(𝑥)| < 𝜖).  Hence, there is a sequence 

of trig polynomials 𝑇𝑛 such that 𝑇𝑛 → 𝑓 uniformly on ℝ. 

 

Proof.  Given 𝑓 ∈ 𝐶2𝜋, both 

                            𝑓(𝑥) + 𝑓(−𝑥)    and    (𝑓(𝑥) − 𝑓(−𝑥)) sin(𝑥) 

are even functions.     

Thus by the previous lemma there are even trig polynomials 𝑇1 and 𝑇2 such that  

𝑓(𝑥) + 𝑓(−𝑥) = 𝑇1(𝑥) + 𝑒1(𝑥)   and  (𝑓(𝑥) − 𝑓(−𝑥)) sin(𝑥) = 𝑇2(𝑥) + 𝑒2(𝑥) 

where   ‖𝑒1(𝑥)‖∞ <
𝜖

2
    and    ‖𝑒2(𝑥)‖∞ <

𝜖

2
 . 

 

Multiplying the first equation by sin2(𝑥) and the second by sin(𝑥) and adding them 

we get: 

       (𝑓(𝑥) + 𝑓(−𝑥)) sin2 𝑥 = (sin2 𝑥) 𝑇1(𝑥) + (sin2 𝑥) 𝑒1(𝑥)    

       (𝑓(𝑥) − 𝑓(−𝑥)) sin2 𝑥 = (sin(𝑥) 𝑇2(𝑥) + (sin(𝑥) 𝑒2(𝑥) 

     2𝑓(𝑥) sin2 𝑥 = (sin2 𝑥)𝑇1(𝑥) + (𝑠𝑖𝑛𝑥)𝑇2(𝑥) + (sin2 𝑥)𝑒1(𝑥) + (𝑠𝑖𝑛𝑥)𝑒2(𝑥). 
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Dividing by 2 we get: 

 𝑓(𝑥) sin2 𝑥 =
1

2
[(sin2 𝑥)𝑇1(𝑥) + (𝑠𝑖𝑛𝑥)𝑇2(𝑥)]                                                                         

                                               +
1

2
[(sin2 𝑥)𝑒1(𝑥) + (𝑠𝑖𝑛𝑥)𝑒2(𝑥)].    

 

But  
1

2
[(sin2 𝑥)𝑇1(𝑥) + (𝑠𝑖𝑛𝑥)𝑇2(𝑥)] is a trig polynomial, let’s call it 𝑇3(𝑥).  

 

In addition 

 sup
𝑥∈ℝ

|
1

2
[(sin2 𝑥)𝑒1(𝑥) + (𝑠𝑖𝑛𝑥)𝑒2(𝑥)]| ≤ sup

𝑥∈ℝ
|

1

2
(sin2 𝑥)(𝑒1(𝑥))| + 

                                                                                      sup
𝑥∈ℝ

|
1

2
(𝑠𝑖𝑛 𝑥)(𝑒2(𝑥))|  

                                                                                  ≤          
𝜖

4
         +          

𝜖

4
       =

𝜖

2
 .  

 

 So   𝑓(𝑥) sin2 𝑥 = 𝑇3(𝑥) + 𝑒3(𝑥) ;        (∗)    where   ‖𝑒3(𝑥)‖∞ <
𝜖

2
 . 

 

If 𝑓 ∈ 𝐶2𝜋 then so is 𝑓 (𝑥 −
𝜋

2
).  So 

     𝑓 (𝑥 −
𝜋

2
) sin2 𝑥 = 𝑇4(𝑥) + 𝑒4(𝑥) ;        where   ‖𝑒4(𝑥)‖∞ <

𝜖

2
 .   

   

Replacing 𝑥 +
𝜋

2
 for 𝑥 in the above equation we get: 

     𝑓(𝑥) sin2(𝑥 +
𝜋

2
) = 𝑇5(𝑥) + 𝑒5(𝑥) ;        where ‖𝑒5(𝑥)‖∞ <

𝜖

2
 .  

 

 sin (𝑥 +
𝜋

2
) = cos(𝑥) so we get: 

       𝑓(𝑥) cos2(𝑥) = 𝑇5(𝑥) + 𝑒5(𝑥).         (∗∗) 
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Now we add the two earlier equations ((∗) and (∗∗)) : 

          𝑓(𝑥) sin2(𝑥) = 𝑇3(𝑥) + 𝑒3(𝑥) 

         𝑓(𝑥) cos2(𝑥) = 𝑇5(𝑥) + 𝑒5(𝑥)  

                        𝑓(𝑥) = 𝑇6(𝑥) + 𝑒6(𝑥)  

 

where  sup
𝑥∈ℝ

|𝑒6(𝑥)| = sup
𝑥∈ℝ

|𝑒3(𝑥) + 𝑒5(𝑥)| ≤ sup
𝑥∈ℝ

|𝑒3(𝑥)| + sup
𝑥∈ℝ

|𝑒5(𝑥)| 

                                                                                    ≤            
𝜖

2
        +     

𝜖

2
       = 𝜖. 

So we have: 

             sup
𝑥∈ℝ

|𝑓(𝑥) − 𝑇6(𝑥)| = sup
𝑥∈ℝ

|𝑒6(𝑥)| < 𝜖.     

Thus   ‖𝑓 − 𝑇‖∞ < 𝜖.       

 

 

Fourier Series 

Given 𝑓 ∈ 𝐶2𝜋 we can express it as the uniform limit of a sequence of trigonometric 

polynomials, 𝑇𝑛(𝑥),  i.e.,  𝑇𝑛(𝑥) converges uniformly to 𝑓(𝑥).  Now we would like, at 

least in some cases, to calculate a sequence 𝑇𝑛(𝑥) where this is the case.  Here we will 

calculate the Fourier series for 𝑓(𝑥).  

We will start off writing: 

𝑓(𝑥)~
𝑎0

2
+ ∑(𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))

∞

𝑘=1

 

where the RHS is the Fourier series for 𝑓(𝑥).  We write ~ instead of = because we 

don’t know if the RHS will converge (pointwise) to the value of 𝑓 at each 𝑥 ∈ ℝ. 
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How do we calculate 𝑎𝑖 , 𝑏𝑖? 

If we multiply both sides by sin(𝑚𝑥) and integrate we get: 

∫ 𝑓(𝑥) sin(𝑚𝑥) 𝑑𝑥
𝜋

−𝜋

 

         = ∫ sin(𝑚𝑥) [
𝑎0

2
+

𝜋

−𝜋

∑(𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))

∞

𝑘=1

]𝑑𝑥 

         

              = ∫
𝑎0

2
sin(𝑚𝑥) 𝑑𝑥

𝜋

−𝜋
                                     

                        + ∫ sin (𝑚𝑥) ∑ (𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))∞
𝑘=1 ]𝑑𝑥

𝜋

−𝜋
  

          

Now assuming for the moment that we can integrate term by term: 

  = ∫
𝑎0

2
sin(𝑚𝑥) 𝑑𝑥

𝜋

−𝜋
                                                                                          

                   + ∑ ∫ (sin(𝑚𝑥))(𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))𝑑𝑥
𝜋

−𝜋
∞
𝑘=1  

 

   = 𝑏𝑚 ∫ sin2(𝑚𝑥) 𝑑𝑥
𝜋

−𝜋
= 𝑏𝑚 ∫ (

1

2
−

1

2
cos(2𝑚𝑥)) 𝑑𝑥 =

𝜋

−𝜋
𝑏𝑚𝜋.  

 

So we have:            𝑏𝑚 =
1

𝜋
∫ 𝑓(𝑥) sin(𝑚𝑥) 𝑑𝑥

𝜋

−𝜋
. 

 

Similarly we get:     𝑎𝑚 =
1

𝜋
∫ 𝑓(𝑥) cos(𝑚𝑥) 𝑑𝑥

𝜋

−𝜋
. 

(with 𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥)

𝜋

−𝜋
. 


