Totally Bounded Sets- HW Problems

1. Let M, d be a metric space with $A \subseteq B \subseteq M$. Suppose that B is totally bounded. Prove that A is totally bounded.

2. Suppose $A, B \subseteq M, d$ are totally bounded subsets of M. Prove that $A \cup B$ is totally bounded.

3. Let $M = \{sequences \ of \ real \ numbers \ \{x_i\} \ with \ \sup_{1 \le i < \infty} |x_i| < \infty \}$. Define $d(\{x_i\}, \{y_i\}) = \sup_{1 \le i < \infty} |x_i - y_i|$. M is a metric space (called l_{∞}) with this metric. Let $p \in M$ given by the sequence $p = \{0, 0, 0, ...\}$, the zero sequence.

Let $A = \{ \{x_i\} \in M \mid d(\{x_i\}, p) \le 1 \}.$

- a. Give an example of an element of A (i.e. a sequence $\{x_i\} \in M$ such that $d(\{x_i\}, p) \leq 1$).
- b. Prove that *A* is bounded but not totally bounded.

4. Prove that any bounded subset of \mathbb{R} with the usual metric is totally bounded.

5. Let \mathbb{R} be a metric space with the metric

$$d(x, y) = 1 \quad \text{if } x \neq y$$
$$d(x, y) = 0 \quad \text{if } x = y.$$

Prove that $[0,1] \subseteq \mathbb{R}$ is bounded but not totally bounded.

6. Let $A \subseteq X$, d a metric space. Suppose there are an infinite number of elements in A , $e_1, e_2, e_3, \dots \in A$, such that

$$d(e_i, e_j) = 4 \quad \text{if } i \neq j$$
$$d(e_i, e_j) = 0 \quad \text{if } i = j$$

.

for i, j = 1, 2, 3 Prove that A is not totally bounded.