Def. Let $f: E \subseteq \mathbb{R} \to \mathbb{R}$ and $a \in E$. $\lim_{x \to a} f(x) = +\infty$ means for every M > 0 there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$ then f(x) > M.

Ex. Prove that $\lim_{x \to 3} \frac{1}{(x-3)^2} = +\infty$.

We must show given any M > 0 there exists a $\delta > 0$ such that if $0 < |x - 3| < \delta$ then f(x) > M.

Start with the statement f(x) > M and work back toward the δ statement.

$$\frac{1}{(x-3)^2} > M$$
 is equivalent to: $(x-3)^2 < \frac{1}{M}$ since both sides are positive.

Now take square roots: $|x - 3| < \frac{1}{\sqrt{M}}$ (Note: $\sqrt{x^2} = |x|$)

Choose $\delta = \frac{1}{\sqrt{M}}$

Now let's show that this δ works:

$$|x - 3| < \delta = \frac{1}{\sqrt{M}}$$
$$|x - 3|^2 = (x - 3)^2 < \frac{1}{M}$$
$$\frac{1}{(x - 3)^2} > M.$$

So we have shown $\lim_{x \to 3} \frac{1}{(x-3)^2} = +\infty$.

Ex. Prove that $\lim_{x \to 2} \frac{-1}{(x^2 - 4)^2} = -\infty$.

We must show given any M < 0 there exists a $\delta > 0$ such that if $0 < |x - 2| < \delta$ then f(x) < M.

Again, we start with the statement f(x) < M and work backwards toward the δ statement.

$$\frac{-1}{(x^2-4)^2} < M$$
 is equivalent to $\frac{1}{(x^2-4)^2} > -M$

Since both sides are now positive (since M < 0) we have:

$$(x^2 - 4)^2 < \frac{-1}{M}$$
; Factoring the RHS we get:
 $(x + 2)^2 (x - 2)^2 < \frac{-1}{M}$.

Now let's find an upper bound for $(x + 2)^2$.

Choose $\delta \leq 1$.

Then |x-2| < 1 or -1 < x - 2 < 1 now add 4 to the inequality; 3 < x + 2 < 5; now square the inequality; $9 < (x + 2)^2 < 25$; So now we can say that if $\delta \le 1$ then:

 $(x+2)^2(x-2)^2 < 25(x-2)^2.$

So if we can force the RHS to be less than $\frac{-1}{M}$ we'll be in business.

$$25(x-2)^{2} < \frac{-1}{M}$$
$$(x-2)^{2} < \frac{-1}{25M}$$
$$|x-2| < \sqrt{\frac{-1}{25M}}$$
 (Note: since $M < 0$, $\frac{-1}{25M}$ is a positive number).

So choose $\delta = \min(1, \sqrt{\frac{-1}{25M}})$

Now let's show this δ works:

If
$$0 < |x - 2| < \delta = \min(1, \sqrt{\frac{-1}{25M}})$$
 then we have:
 $(x^2 - 4)^2 \le 25(x - 2)^2$ since $\delta \le 1$.
 $(x^2 - 4)^2 \le 25(x - 2)^2 < 25\delta^2 \le 25\left(\frac{-1}{25M}\right) = \frac{-1}{M}$ since $\delta \le \sqrt{\frac{-1}{25M}}$.
 $\Rightarrow \quad \frac{1}{(x^2 - 4)^2} > -M$ since both sides are positive; Now multiply by -1
 $\frac{-1}{(x^2 - 4)^2} < M$.

Hence we have shown: $\lim_{x \to 2} \frac{-1}{(x^2-4)^2} = -\infty$.

 $\lim_{x\to\infty} f(x) = -\infty$ means for every M < 0 there exists an N such that if

The definitions of $\lim_{x \to -\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$ are similar except that x < N.

Ex. Prove that $\lim_{x \to \infty} (x^2 - 2x) = +\infty$.

We must show that given any M > 0, we can find an N such that if x > N then $f(x) = x^2 - 2x > M$. Notice that $x^2 - 2x = x(x - 2)$

So if we choose N = M + 2 then we have if x > N:

$$x(x-2) > (M+2)M = M^2 + 2M > M$$
 since $M^2 + M > 0$
because $M > 0$.

Thus we have shown $\lim_{x \to \infty} (x^2 - 2x) = +\infty$.

Def. Let $f: \mathbb{R} \to \mathbb{R}$. $\lim_{x \to \infty} f(x) = L$ means given any $\epsilon > 0$ there exists an N such that if x > N then $|f(x) - L| < \epsilon$.

Ex. Prove
$$\lim_{x \to -\infty} \frac{1}{x+2} = 0$$
.

We must show given any $\epsilon > 0$ there exists an N such that if x < N then

$$\left|\frac{1}{x+2} - 0\right| < \epsilon.$$

Start with the ϵ statement and work backwards toward the *N* statement.

$$\left|\frac{1}{x+2} - 0\right| = \left|\frac{1}{x+2}\right| < \epsilon.$$

If we choose $N \leq -2$ then $\frac{1}{x+2} < 0$ for all x < N.

Thus in that case: $\left|\frac{1}{x+2}\right| = \frac{-1}{x+2}$.

Thus we want to force $\frac{-1}{x+2} < \epsilon$.

Now solve this inequality for x.

$$\frac{1}{x+2} > -\epsilon$$
$$x+2 < \frac{-1}{\epsilon}$$
$$x < \frac{-1}{\epsilon} - 2.$$

Choose $N = \frac{-1}{\epsilon} - 2$ (which is also less than -2).

Let's show that this *N* works.

If
$$x < N = \frac{-1}{\epsilon} - 2$$
 then
 $x + 2 < \frac{-1}{\epsilon}$
 $\frac{1}{x+2} > -\epsilon$ since both sides are negative
 $\frac{-1}{x+2} < \epsilon$; and since $x + 2 < 0$, we have:
 $\left|\frac{1}{x+2} - 0\right| = \left|\frac{1}{x+2}\right| < \epsilon$.
Thus we have shown: $\lim_{x \to -\infty} \frac{1}{x+2} = 0$.

Ex. Prove
$$\lim_{x \to \infty} e^{\frac{1}{x}} = 1.$$

We must show that given any $\epsilon > 0$ there exists an N such that if x > N then $|e^{\frac{1}{x}} - 1| < \epsilon$.

As usual, we start with the ϵ statement and work backwards toward the N statement.

Let's start by choosing N > 0 (the domain of the function doesn't include x = 0anyway). Thus $\frac{1}{x} > 0$ and $e^{\frac{1}{x}} - 1 > 0$. That means that $\left| e^{\frac{1}{x}} - 1 \right| = e^{\frac{1}{x}} - 1 < \epsilon$; let's solve this inequality for x. $e^{\frac{1}{x}} < \epsilon + 1$ Now take natural logs of both sides $\frac{1}{x} < \ln(1 + \epsilon)$ $x > \frac{1}{\ln(1+\epsilon)}$, Since both $\frac{1}{x} > 0$ and $\ln(1+\epsilon) > 0$.

Choose $N = \frac{1}{\ln(1+\epsilon)}$.

Let's show that this N works by using the above steps in reverse:

If
$$x > N = \frac{1}{\ln(1+\epsilon)}$$
 then $x > \frac{1}{\ln(1+\epsilon)}$
$$\frac{1}{x} < \ln(1+\epsilon)$$
$$e^{\frac{1}{x}} < \epsilon + 1$$
$$\left|e^{\frac{1}{x}} - 1\right| = e^{\frac{1}{x}} - 1 < \epsilon.$$
 Thus $\lim_{x \to \infty} e^{\frac{1}{x}} = 1.$