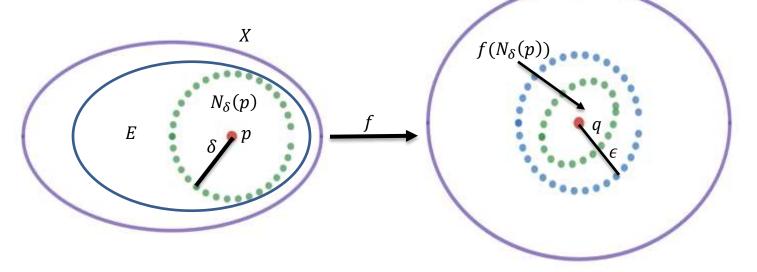
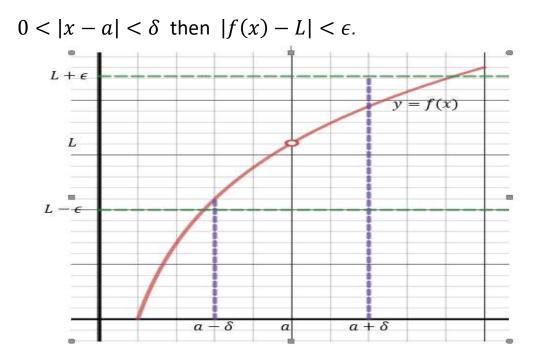
Limits of Functions

Def. Let *X* and *Y* be metric spaces; suppose $E \subseteq X$, $f: E \to Y$, and *p* is a limit point of *E*. We write: $f(x) \to q$ as $x \to p$ or $\lim_{x \to p} f(x) = q$, if there is a point $q \in Y$ such that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if for all $x \in E$ for which: $0 < d_X(x, p) < \delta$ then $d_Y(f(x), q) < \epsilon$.



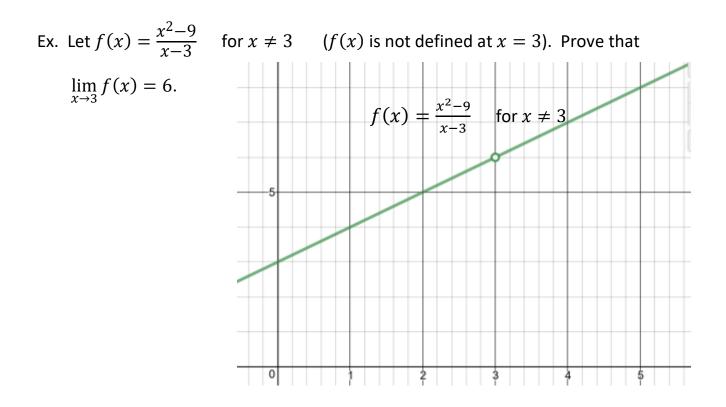
For $X = Y = \mathbb{R}$ this definition says that $f(x) \to L$ as $x \to a$ or

 $\lim_{x \to a} f(x) = L$, means that for all $\epsilon > 0$ there exists a $\delta > 0$ such that if



Notice that the definition of a limit of a function as x goes to p does NOT depend on the value of the function at x = p. In fact, a function can have a limit as x goes to p without the function even being defined at x = p.

To prove that $\lim_{x \to p} f(x) = q$, we are going to need to show we can find a $\delta > 0$ that satisfies the conditions in the definition of $\lim_{x \to p} f(x) = q$. In general, δ will depend on the value of ϵ (i.e., δ will be a function of ϵ) and will depend on the point p.



By the definition of a limit given earlier, we must show that given any $\epsilon > 0$, we can find a $\delta > 0$ such that if $0 < |x - 3| < \delta$ then $|f(x) - 6| < \epsilon$.

As with proving the limit of a sequence, we start with the ϵ statement and work backwards to see what δ will work. Here we want to get the δ statement to appear.

$$\left|\frac{x^2 - 9}{x - 3} - 6\right| = \left|\frac{(x - 3)(x + 3)}{x - 3} - 6\right| = |x + 3 - 6| = |x - 3| < \epsilon.$$

But |x - 3| is exactly what δ controls, i.e., $0 < |x - 3| < \delta$.

So just let $\delta = \epsilon$.

Now let's see that this works.

 $0 < |x-3| < \delta \,$ means that since $\delta = \epsilon$

 $|x-3| < \epsilon$ (we now work our algebra in reverse to get the ϵ statement)

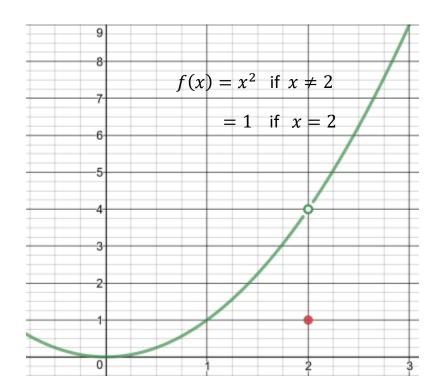
$$\left|\frac{x^{2}-9}{x-3}-6\right| = \left|\frac{(x-3)(x+3)}{x-3}-6\right| = |x+3-6| = |x-3| < \epsilon.$$

So if $0 < |x-3| < \delta$ then $\left|\frac{x^{2}-9}{x-3}-6\right| < \epsilon.$

Thus we have proved: $\lim_{x \to 3} f(x) = 6$.

Ex. Let $f(x) = x^2$ if $x \neq 2$ = 1 if x = 2

Prove $\lim_{x \to 2} f(x) = 4$.



$$0 < |x-2| < \delta \text{ then } |f(x)-4| < \epsilon.$$

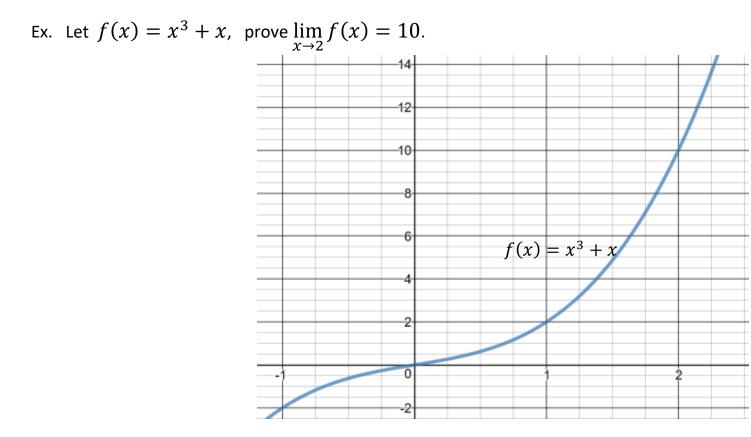
Let's start with the ϵ statement and work backwards until the δ statement appears. For $x \neq 2$, $f(x) = x^2$. So the ϵ statement is:

$$|x^{2} - 4| < \epsilon$$
$$|x^{2} - 4| = |(x + 2)(x - 2)| = |x + 2||x - 2|.$$

|x-2| is part of the δ statement, but what do we do about the factor |x+2|?

Notice that if $\delta \le 1$, ie, 1 < x < 3, then 3 < x + 2 < 5 or |x + 2| < 5. So if $\delta \le 1$, then $|x^2 - 4| = |x + 2||x - 2| < 5|x - 2|$.

Thus, if we can ensure that $5|x - 2| < \epsilon$, then $|x^2 - 4| < \epsilon$. Equivalently, if we can ensure that $|x - 2| < \frac{\epsilon}{5}$ then $|x^2 - 4| < \epsilon$. So choose $\delta = \min(1, \frac{\epsilon}{5})$. Let's show that this δ works, i.e., that if $0 < |x - 2| < \delta$ then $|x^2 - 4| < \epsilon$. $0 < |x - 2| < \delta = \min(1, \frac{\epsilon}{5})$ $|x^2 - 4| = |x + 2||x - 2|$; since $\delta \le 1$ we know that |x + 2| < 5, so $|x^2 - 4| = |x + 2||x - 2| < 5|x - 2|$; since $\delta \le \frac{\epsilon}{5}$ we have: $|x^2 - 4| = |x + 2||x - 2| < 5|x - 2| < 5\delta \le 5\left(\frac{\epsilon}{5}\right) = \epsilon$. So we have proved that $\lim_{x \to 2} f(x) = 4$.



We must show that given any $\epsilon > 0$, we can find a $\delta > 0$ such that if $0 < |x - 2| < \delta$ then $|x^3 + x - 10| < \epsilon$.

By dividing
$$(x - 2)$$
 into $x^3 + x - 10$ we get
 $x^3 + x - 10 = (x - 2)(x^2 + 2x + 5)$ so we have:
 $|x^3 + x - 10| = |x - 2||x^2 + 2x + 5|.$

So, once again, we have the δ statement popping out. The problem is, what do we do about $|x^2 + 2x + 5|$? We again use the trick of limiting $\delta \leq 1$ and ask how big $|x^2 + 2x + 5|$ could possibly be?

Since $\delta \leq 1$, ie, 1 < x < 3, we know |x| < 3. By the triangle inequality:

$$|x^{2} + 2x + 5| \le |x^{2}| + 2|x| + 5 < 9 + 6 + 5 = 20.$$

So we have:

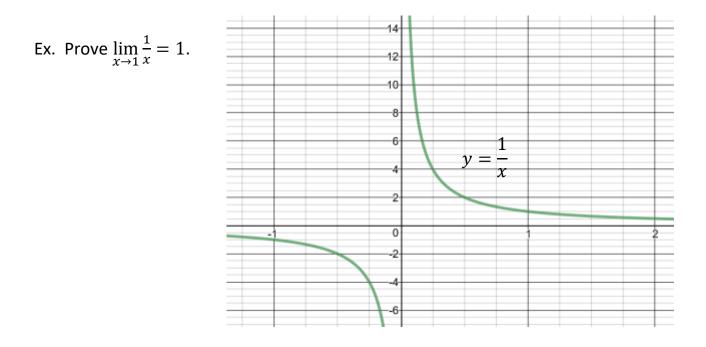
$$|x^{3} + x - 10| = |x - 2||x^{2} + 2x + 5| < 20|x - 2|.$$

Now if we can choose a δ such that $|x^{3} + x - 10| < 20|x - 2| < \epsilon$
We'll be effectively done. But this is equivalent to: $|x - 2| < \frac{\epsilon}{20}$.

So let's choose $\delta = \min(1, \frac{\epsilon}{20}).$

Let's show that this delta works (if $0 < |x - 2| < \delta$ then $|x^3 + x - 10| < \epsilon$). If $\delta = \min(1, \frac{\epsilon}{20})$ we have: $|x^3 + x - 10| = |x - 2| |x^2 + 2x + 5|$; but since $\delta \le 1$ we know that: $|x^3 + x - 10| = |x - 2| |x^2 + 2x + 5| < 20 |x - 2|$; Since $\delta \le \frac{\epsilon}{20}$: $|x^3 + x - 10| < 20 |x - 2| < 20\delta \le 20 \left(\frac{\epsilon}{20}\right) = \epsilon$.

So we have proved that $\lim_{x \to 2} f(x) = 10$.



$$0 < |x-1| < \delta$$
 then $\left|\frac{1}{x} - 1\right| < \epsilon$.

We start with the ϵ statement and work backwards.

$$\left|\frac{1}{x} - 1\right| = \left|\frac{1}{x} - \frac{x}{x}\right| = \left|\frac{1-x}{x}\right| = \left|\frac{1}{x}\right| |x - 1|.$$

Now we need an upper bound on $\left|\frac{1}{x}\right|$.

NOTICE, we can't just let $\delta \leq 1$. Because if we let $\delta = 1$ then

 $0 < |x - 1| < \delta = 1$, means x can be VERY close to 0 and hence $\frac{1}{x}$ won't have an upper bound.

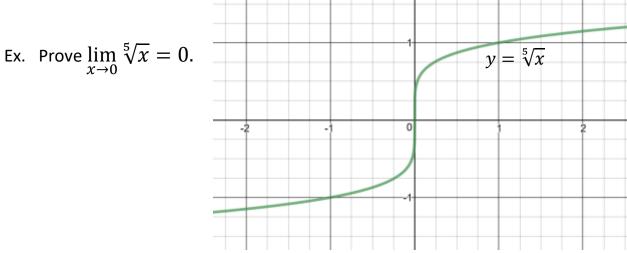
However, there's nothing magical about letting $\delta \leq 1$ (it just tends to be easy to work with). We just want to make sure x stays away from 0, so choose

 $\delta \leq rac{1}{2}$ (or any number less than 1 and greater than 0).

This means that: $|x - 1| < \frac{1}{2}$ $-\frac{1}{2} < x - 1 < \frac{1}{2}$ (now add 1 to all quantities) $\frac{1}{2} < x < \frac{3}{2}$ (now take reciprocals since all terms have same sign) $2 > \frac{1}{x} > \frac{2}{3}$ So: $\left|\frac{1}{x}\right| < 2$ if $\delta \le \frac{1}{2}$. So if $\delta \le \frac{1}{2}$ we have: $\left|\frac{1}{x} - 1\right| = \left|\frac{1-x}{x}\right| = \left|\frac{1}{x}\right| |x - 1| < 2|x - 1| < \epsilon$. $2|x - 1| < \epsilon$ is equivalent to $|x - 1| < \frac{\epsilon}{2}$. So choose $\delta = min(\frac{1}{2}, \frac{\epsilon}{2})$.

Now let's show this δ works:

$$\left|\frac{1}{x} - 1\right| = \left|\frac{1}{x} - \frac{x}{x}\right| = \left|\frac{1-x}{x}\right| = \left|\frac{1}{x}\right| |x - 1| < 2|x - 1| \quad \text{Since } \delta \le \frac{1}{2}.$$
$$< 2\delta \le 2\left(\frac{\epsilon}{2}\right) = \epsilon \qquad \text{Since } \delta \le \frac{\epsilon}{2}.$$
So $\lim_{x \to 1} \frac{1}{x} = 1.$



$$0 < |x - 0| < \delta$$
 then $\left| \sqrt[5]{x} - 0 \right| < \epsilon$.

Or, equivalently, if $0 < |x| < \delta$ then $\left|\sqrt[5]{x}\right| < \epsilon$.

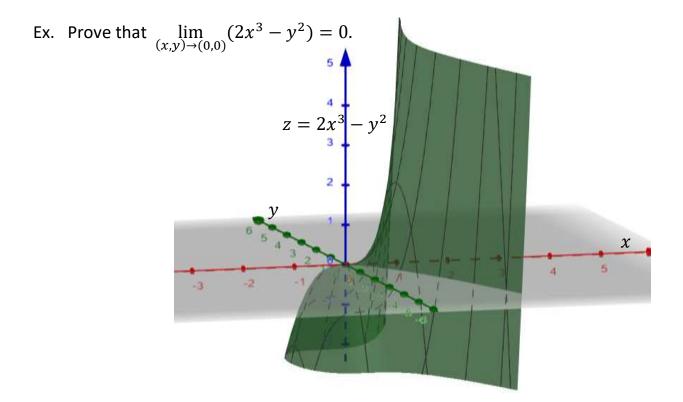
So we need: $\left|\sqrt[5]{x}\right| = \sqrt[5]{|x|} < \epsilon$ or $|x| < \epsilon^5$.

```
Choose \delta = \epsilon^5.
```

Now let's show that this δ works:

 $0 < |x| < \delta$ means that $|x| < \delta = \epsilon^5$ or equivalently: $|\sqrt[5]{x}| < \epsilon$ This is algebraically the same as: $|\sqrt[5]{x} - 0| < \epsilon$.

So we have shown that $\lim_{x \to 0} \sqrt[5]{x} = 0$.



$$0 < d((x, y), (0, 0)) < \delta \text{ then } |2x^3 - y^2 - 0| < \epsilon.$$

i.e. if $0 < \sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2} < \delta \text{ then } |2x^3 - y^2| < \epsilon.$

Let's start with the ϵ statement and work backards toward the δ statement. Using the triangle inequality we have:

$$\begin{aligned} |2x^3 - y^2| &\leq |2x^3| + |y^2| = 2|x|^3 + |y|^2\\ \text{Since } \sqrt{x^2 + y^2} &< \delta \text{ we have } |x| < \sqrt{x^2 + y^2} < \delta \text{ and } |y| < \sqrt{x^2 + y^2} < \delta. \end{aligned}$$

Now choose $\delta \leq 1$, so $|x| < \delta \leq 1$ and $|y| < \delta \leq 1$.

Notice that $|x|^3 < |x|$ and $|y|^2 < |y|$ since |x| < 1 and |y| < 1, So we have:

$$|2x^3 - y^2| \le 2|x|^3 + |y|^2 < 2|x| + |y| < 2\delta + \delta = 3\delta.$$

So we need to force

$$|2x^3 - y^2| < 3\delta < \epsilon.$$

Or $\delta < \frac{\epsilon}{3}$.

Choose
$$\delta = \min(1, \frac{\epsilon}{3})$$
.

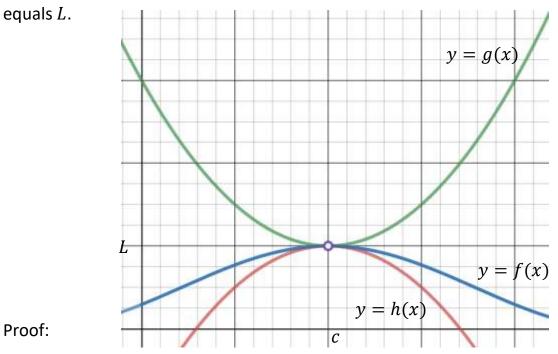
Now let's show that this δ works.

If
$$0 < \sqrt{x^2 + y^2} < \delta$$
 then:
 $|2x^3 - y^2| \le |2x^3| + |y^2| = 2|x|^3 + |y|^2$; so
 $|2x^3 - y^2 - 0| \le 2|x|^3 + |y|^2 < 2|x| + |y|$ because $\delta \le 1$.

Since
$$\sqrt{x^2 + y^2} < \delta \Rightarrow |x| < \delta$$
 and $|y| < \delta$, we have:
 $|2x^3 - y^2 - 0| < 2|x| + |y| < 3\delta \le 3\left(\frac{\epsilon}{3}\right) = \epsilon$. because $\delta \le \frac{\epsilon}{3}$.

Thus we have shown that $\lim_{(x,y)\to(0,0)} (2x^3 - y^2) = 0.$

Theorem (Squeeze theorem): If $h(x) \le f(x) \le g(x)$ for $x \in (a, b)$, except possibly at $c \in (a, b)$, and if $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$, then $\lim_{x \to c} f(x)$ exists and



Given any
$$\epsilon > 0$$
 we need to show that there exists a $\delta > 0\,$ such that if

$$0 < |x - c| < \delta$$
 then $|f(x) - L| < \epsilon$.

Since $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$ we know that given any $\epsilon > 0$ there exists a $\delta_1 > 0$ and a $\delta_2 > 0$ such that if: $0 < |x - c| < \delta_1$ then $|h(x) - L| < \epsilon$ $0 < |x - c| < \delta_2$ then $|g(x) - L| < \epsilon$.

Let's let $\delta = \min(\delta_1, \delta_2)$.

Thus if $0 < |x - c| < \delta$ then we know both:

 $|h(x) - L| < \epsilon$ and $|g(x) - L| < \epsilon$.

Or equivalently:

$$-\epsilon < h(x) - L < \epsilon$$
 and $-\epsilon < g(x) - L < \epsilon$.

In particular, we know that if $0 < |x - c| < \delta$ then:

$$-\epsilon < h(x) - L$$
 and $g(x) - L < \epsilon$ or
 $L - \epsilon < h(x)$ and $g(x) < L + \epsilon$.

But by assumption $h(x) \le f(x) \le g(x)$ so we have: $L - \epsilon < h(x) \le f(x) \le g(x) < L + \epsilon$ $L - \epsilon < f(x) < L + \epsilon$ which is the same as: $|f(x) - L| < \epsilon$ if $0 < |x - c| < \delta$ So we have shown that $\lim_{x \to a} f(x) = L$

So we have shown that $\lim_{x \to c} f(x) = L$.

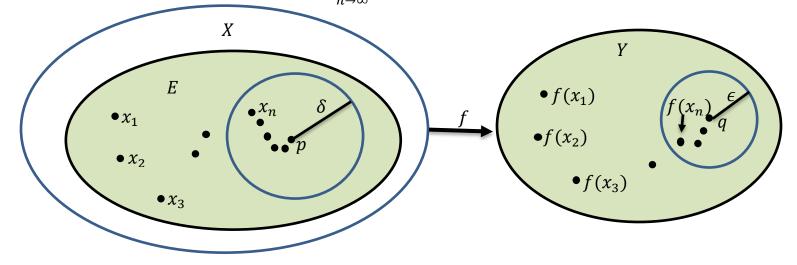
Ex. Prove
$$\lim_{x \to 0} xsin(\frac{1}{x}) = 0.$$

Since $|sin(\frac{1}{x})| \le 1$ we have that $0 \le |xsin(\frac{1}{x})| \le |x|$ Now let h(x) = 0, $f(x) = |xsin(\frac{1}{x})|$, g(x) = |x|Since $\lim_{x \to 0} |x| = 0$ and $\lim_{x \to 0} 0 = 0$, we know that $\lim_{x \to 0} |xsin(\frac{1}{x})| = 0$. From an earlier HW problem we know that for a sequence $\{a_n\}$, $\lim_{n \to \infty} a_n = 0$ if and only if $\lim_{n \to \infty} |a_n| = 0$. It is also true for limits of functions:

$$\lim_{x \to c} f(x) = 0 \text{ if an only if } \lim_{x \to c} |f(x)| = 0.$$

Thus
$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

Theorem: Let *X*, *Y* be metric spaces with $f: E \subseteq X \to Y$, with *p* a limit point of *E* and $q \in Y$, then $\lim_{x \to p} f(x) = q$ if and only if $\lim_{n \to \infty} f(x_n) = q$ for every sequence $\{x_n\} \subseteq E$ such that $x_n \neq p$ and $\lim_{n \to \infty} x_n = p$.



Proof: Assume $\lim_{x \to p} f(x) = q$ and we will show that given any sequence $\{x_n\} \subseteq E$ such that $x_n \neq p$ and $\lim_{n \to \infty} x_n = p$, that $\lim_{n \to \infty} f(x_n) = q$.

Let $\epsilon > 0$ be given. By definition of $\lim_{x \to p} f(x) = q$, there exists a $\delta > 0$ such that if $x \epsilon E$ and $0 < d_X(x, p) < \delta$ then $d_Y(f(x), q) < \epsilon$.

Since $\lim_{n\to\infty} x_n = p$, by definition, there exists an N such that if $n \ge N$ then $0 < d_X(x_n, p) < \delta$ (for the above δ).

So for $n \ge N$, $0 < d_X(x_n, p) < \delta$, and $d_Y(f(x_n), q) < \epsilon$ Thus $\lim_{n \to \infty} f(p_n) = q$.

Now we assume that $\lim_{n \to \infty} f(x_n) = q$ for every sequence $\{x_n\} \subseteq E$ such that $x_n \neq p$ and $\lim_{n \to \infty} x_n = p$ and show that $\lim_{x \to p} f(x) = q$.

We will do this with a proof through contradiction.

Let's assume that the conclusion is false, ie that $\lim_{x \to p} f(x) \neq q$.

Then there exists some $\epsilon > 0$ such that for every $\delta > 0$ there exists a point $x \epsilon E$ (that depends on δ) for which $d_Y(f(x), q) \ge \epsilon$, but $0 < d_X(x, p) < \delta$.

Take $\delta_n = \frac{1}{n}; n = 1, 2, 3, ...$

For each δ_n there exists some point x_n with $d_Y(f(x_n), q) \ge \epsilon$.

But then $\lim_{x\to p} f(x_n) \neq q$ which contradicts our assumption that $\lim_{n\to\infty} f(x_n) = q$. So $\lim_{x\to p} f(x) = q$. Def. $f, g: X \to \mathbb{R}$, X a metric space. Then:

- 1. $(f \pm g)(x) = f(x) \pm g(x)$
- 2. (fg)(x) = f(x)g(x)
- 3. $\frac{f}{g}(x) = \frac{f(x)}{g(x)}; \quad g(x) \neq 0$

$$f, g: X \to \mathbb{R}^k$$

- 1. $(f \pm g)(x) = f(x) \pm g(x)$ (vector addition/subtraction)
- 2. $(f \cdot g)(x) = f(x) \cdot g(x)$ (dot product of vectors)
- 3. $(\lambda f)(x) = \lambda f(x)$ (scalar multiplication, $\lambda \in \mathbb{R}$).

Theorem: Suppose $E \subseteq X$ a metric space, p a limit point of E, and $f, g: E \to \mathbb{R}$ with $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$, then:

- a. $\lim_{x \to p} (f \pm g)(x) = A \pm B$
- b. $\lim_{x \to p} fg(x) = AB$
- c. $\lim_{x \to p} \frac{f}{g}(x) = \frac{A}{B}$; if $B \neq 0$.

Proof. All 3 follow from the previous theorem and the analogous theorem for sequences.