Upper and Lower Limits

Def. Let $\{s_n\}$ be a sequence of real numbers such that:

1. If for every real number M there is a positive integer N such that if $n \geq N$ then

 $s_n \geq M$, then we say $\lim_{n \to \infty} s_n = +\infty$

2. If for every real M there is a positive integer N such that if $n \geq N$ then

$$
s_n \leq M
$$
, then we say $\lim_{n \to \infty} s_n = -\infty$.

Def. Suppose $E \subseteq \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ and that there exists an

 $\alpha \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that:

- i. $x \le \alpha$ for all $x \in E$
- ii. if $\beta < \alpha$ then β is not an upper bound for E

then α is called the **Least Upper Bound** for E , or **Supremum** of E , and we write:

$$
\alpha =sup E.
$$

If $\alpha \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that:

- i. $x \ge \alpha$ for all $x \in E$
- ii. if $\beta > \alpha$ then β is not an lower bound for E

then we say α is the Greatest Lower Bound for E , or the Infimum of E , and we write: $\alpha = infE$.

Notice that $infE$ and $supE$ do not have to lie in E .

Ex. Let $E = (0,1)$.

inf $E = 0$ and sup $E = 1$, neither of which lie in E.

Ex. Let $E = [0, \infty)$ $infE = 0$, $supE = +\infty$

Ex. Let
$$
E = \{x \in \mathbb{R} \mid 2 < x^2 < 3\}
$$

\n $inf E = -\sqrt{3}$, $sup E = \sqrt{3}$

Def. Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of

 $x\epsilon\mathbb{R}\cup\{-\infty\}\cup\{\infty\}$ such that $s_{n_k}\to x$ for some subsequence $\{s_{n_k}\}.$ This set E contains all subsequential limits of $\{S_n\}$ (including $+\infty$ and $-\infty$, if they are subsequential limits).

$$
s^* = \sup E = \lim_{n \to \infty} \sup(s_n) = \text{upper limit of } \{s_n\}
$$

$$
s_* = \inf E = \lim_{n \to \infty} \inf(s_n) = \text{lower limit of } \{s_n\}.
$$

Ex. If a sequence $\{s_n\}$ has a limit L, (e.g. $\{\frac{n}{n+1}\}$ $\frac{n}{n+1}$ \rightarrow 1} then

$$
E = \{L\}
$$

 $\lim_{n\to\infty} \sup(s_n) = \lim_{n\to\infty} \inf(s_n) = L$, i.e., the upper limit=lower limit=L.

Ex. Let
$$
\{s_n\} = \{1, -1, 1, -1, 1, -1, ...\}
$$
; where $s_{2k-1} = 1$, $s_{2k} = -1$
\n $E = \{-1, 1\}$
\n $s^* = supE = \lim_{n \to \infty} sup(s_n) = 1$ = upper limit of $\{s_n\}$
\n $s_* = infE = \lim_{n \to \infty} inf(s_n) = -1$ =lower limit of $\{s_n\}$

Ex. Let $\{s_n\}$ =all rational numbers.

 Since the rational numbers are dense in the real numbers, every real number is a subsequential limit of $\{s_n\}$ as well as ∞ and $-\infty$. Thus we have:

$$
E = \mathbb{R} \cup \{ \infty \} \cup \{ -\infty \}
$$

$$
s^* = \sup E = \lim_{n \to \infty} \sup(s_n) = +\infty = \text{ upper limit of } \{ s_n \}
$$

$$
s_* = \inf E = \lim_{n \to \infty} \inf(s_n) = -\infty = \text{lower limit of } \{ s_n \}.
$$

Ex. Let
$$
\{s_n\}
$$
 be defined by: $s_{2n} = (-1)^n(\frac{n}{2(n+1)})$, $s_{2n-1} = \frac{2n}{n+1}$
\n $\{s_n\} = \{1, \frac{-1}{4}, \frac{4}{3}, \frac{1}{3}, \frac{6}{4}, \frac{-3}{8}, \frac{8}{5}, \frac{4}{10}, \dots\}$
\n $E = \{\frac{-1}{2}, \frac{1}{2}, 2\}$
\n $s^* = supE = \lim_{n \to \infty} sup(s_n) = 2$ = upper limit of $\{s_n\}$
\n $s_* = infE = \lim_{n \to \infty} inf(s_n) = -\frac{1}{2}$ = lower limit of $\{s_n\}$.