Def. Let $\{S_n\}$ be a sequence of real numbers such that:

1. If for every real number M there is a positive integer N such that if $n \ge N$ then

 $s_n \geq M$, then we say $\lim_{n \to \infty} s_n = +\infty$

2. If for every real *M* there is a positive integer *N* such that if $n \ge N$ then

$$s_n \leq M$$
, then we say $\lim_{n \to \infty} s_n = -\infty$.

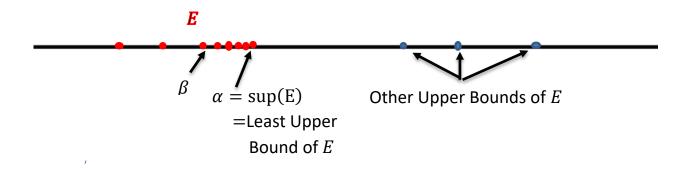
Def. Suppose $E \subseteq \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ and that there exists an

 $\alpha \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that:

- i. $x \leq \alpha$ for all $x \in E$
- ii. if $\beta < \alpha$ then β is not an upper bound for *E*

then α is called the **Least Upper Bound** for *E*, or **Supremum** of *E*, and we write:

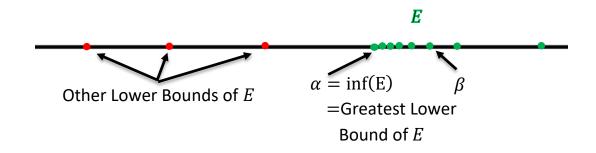
$$\alpha = supE$$
.



If $\alpha \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that:

- i. $x \ge \alpha$ for all $x \in E$
- ii. if $\beta > \alpha$ then β is not an lower bound for *E*

then we say α is the **Greatest Lower Bound** for *E*, or the **Infimum** of *E*, and we write: $\alpha = infE$.



Notice that infE and supE do not have to lie in E.

Ex. Let E = (0,1).

inf E = 0 and sup E = 1, neither of which lie in E.

Ex. Let $E = [0, \infty)$ inf E = 0, $sup E = +\infty$

Ex. Let
$$E = \{x \in \mathbb{R} | 2 < x^2 < 3\}$$

 $inf E = -\sqrt{3}$, $sup E = \sqrt{3}$

Def. Let $\{s_n\}$ be a sequence of real numbers. Let *E* be the set of

 $x \in \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set *E* contains all subsequential limits of $\{s_n\}$ (including $+\infty$ and $-\infty$, if they are subsequential limits).

$$s^* = supE = \lim_{n \to \infty} sup(s_n) = upper limit of \{s_n\}$$

 $s_* = infE = \lim_{n \to \infty} inf(s_n) = lower limit of \{s_n\}.$

Ex. If a sequence $\{s_n\}$ has a limit L, (e.g. $\{\frac{n}{n+1}\} \rightarrow 1\}$ then

$$E = \{L\}$$

 $\lim_{n \to \infty} \sup(s_n) = \lim_{n \to \infty} \inf(s_n) = L, \text{ i.e., the upper limit=lower limit=}L.$

Ex. Let
$$\{s_n\} = \{1, -1, 1, -1, 1, -1, ...\}$$
; where $s_{2k-1} = 1$, $s_{2k} = -1$
 $E = \{-1, 1\}$
 $s^* = supE = \lim_{n \to \infty} sup(s_n) = 1$ = upper limit of $\{s_n\}$
 $s_* = infE = \lim_{n \to \infty} inf(s_n) = -1$ =lower limit of $\{s_n\}$

Ex. Let $\{s_n\}$ =all rational numbers.

Since the rational numbers are dense in the real numbers, every real number is a subsequential limit of $\{s_n\}$ as well as ∞ and $-\infty$. Thus we have:

$$E = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$$
$$s^* = supE = \lim_{n \to \infty} sup(s_n) = +\infty = \text{upper limit of } \{s_n\}$$
$$s_* = infE = \lim_{n \to \infty} inf(s_n) = -\infty = \text{lower limit of } \{s_n\}.$$

Ex. Let
$$\{s_n\}$$
 be defined by: $s_{2n} = (-1)^n (\frac{n}{2(n+1)}), \qquad s_{2n-1} = \frac{2n}{n+1}$
 $\{s_n\} = \{1, \frac{-1}{4}, \frac{4}{3}, \frac{1}{3}, \frac{6}{4}, \frac{-3}{8}, \frac{8}{5}, \frac{4}{10}, \dots\}$
 $E = \{\frac{-1}{2}, \frac{1}{2}, 2\}$
 $s^* = supE = \lim_{n \to \infty} sup(s_n) = 2$ = upper limit of $\{s_n\}$
 $s_* = infE = \lim_{n \to \infty} inf(s_n) = -\frac{1}{2}$ = lower limit of $\{s_n\}$.