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                                     Subsequences and Cauchy Sequences 

 

Subsequences 

Def.  Given a sequence {𝑝𝑛}, consider the sequence of positive integers {𝑛𝑘} such 

that 𝑛1 < 𝑛2 < 𝑛3 < 𝑛4 < ⋯,   then {𝑝𝑛𝑘
}  is called a subsequence of {𝑝𝑛}. 

If {𝑝𝑛𝑘
}  converges, its limit is called a subsequential limit of {𝑝𝑛}. 

 

Ex.   1,
1

2
, 1,

1

3
, 1,

1

4
, 1,

1

5
, …;     where 𝑝2𝑘−1 = 1 and 𝑝2𝑘 =

1

𝑘+1
. 

{𝑝2𝑘−1} → 1    and   {𝑝2𝑘} = {
1

𝑘+1
}→ 0 

So 0 and 1 are subsequential limits of {𝑝𝑛}. 

 

Notice that in the previous example {𝑝𝑛} does not have a limit.  How do we prove 

that? 

Suppose {𝑝𝑛} does have a limit, say 𝐿.  

Let’s show that we can find an 𝜖 > 0 where it is impossible to find an 𝑁 such that 

if 𝑛 ≥ 𝑁 implies  |𝑝𝑛 − 𝐿| < 𝜖. 

Draw a picture of the points 𝑝𝑛.   
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Notice that one subsequence tends toward 0 and the other toward 1.  Let’s 

choose an 𝜖 which is less than half of 1 − 0 = 1.  Let’s choose 𝜖 =
1

4
  , for 

example. 

 

Notice that for 𝑛 ≥ 3 we always have   |𝑝𝑛 − 𝑝𝑛+1| >
1

2
 . 

Thus it’s not possible to find an 𝑁 ≥ 3 such that if 𝑛 ≥ 𝑁 implies |𝑝𝑛 − 𝐿| <
1

4
 .  

 

Let’s see why.  

Suppose there was an 𝑁 ≥ 3 such that  𝑛 ≥ 𝑁 implies |𝑝𝑛 − 𝐿| <
1

4
 . 

By the triangle inequality we have:   

                |𝑝𝑛 − 𝑝𝑛+1|≤ |𝑝𝑛 − 𝐿| + |𝑝𝑛+1 − 𝐿|,          but then 

    
1

2
< |𝑝𝑛 − 𝑝𝑛+1|≤ |𝑝𝑛 − 𝐿| + |𝑝𝑛+1 − 𝐿| <

1

4
+

1

4
=

1

2
 ;    a contradiction.  

 

 

So it’s not possible to find an 𝑁 such that  𝑛 ≥ 𝑁 implies |𝑝𝑛 − 𝐿| <
1

4
 and 

{𝑝𝑛} does not have a limit.   
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Theorem:  𝑝𝑛 → 𝑝  in 𝑋, 𝑑  if and only if every subsequence {𝑝𝑛𝑘
}  converges to 𝑝. 

 

Proof:  Assume 𝑝𝑛 → 𝑝  in 𝑋, 𝑑  and let’s show every subsequence {𝑝𝑛𝑘
}  

converges to 𝑝. 

We need to show that given any 𝜖 > 0 we can find an 𝑁 such that  𝑛𝑘 ≥ 𝑁 

implies 𝑑(𝑝𝑛𝑘
, 𝑝) < 𝜖. 

We know that since 𝑝𝑛 → 𝑝  for any 𝜖 > 0 there exists an 𝑁′ such that if  𝑛 ≥ 𝑁′ 

then 𝑑(𝑝𝑛, 𝑝) < 𝜖. 

 

 

 

 

 

Since 𝑛𝑘 ≥ 𝑛 choose 𝑁 = 𝑁′ 

Now since 𝑛𝑘 ≥ 𝑛 ≥ 𝑁 we have 𝑑(𝑝𝑛𝑘
, 𝑝) < 𝜖. 

Thus {𝑝𝑛𝑘
}  converges to 𝑝. 
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Now assume every subsequence {𝑝𝑛𝑘
}  converges to 𝑝 and show 𝑝𝑛 → 𝑝 . 

Let’s assume that 𝑝𝑛 does not converge to 𝑝 and derive a contradiction. 

If 𝑝𝑛  does not converge to 𝑝 then there exists an 𝜖 > 0 such that there are an 

infinite number of {𝑝𝑛𝑗
}  with  𝑑(𝑝𝑛𝑗

, 𝑝) > 𝜖. 

 

 

 

 

 

 

 

 

 

 

But that means the subsequence {𝑝𝑛𝑗
}   doesn’t converge to 𝑝, a contradiction. 

Hence 𝑝𝑛 → 𝑝  . 

 

Note: {𝑝𝑛} is also a subsequence of {𝑝𝑛}, thus if every subsequence of {𝑝𝑛} 

converges so does {𝑝𝑛}. 

 

 

 

𝑝 
𝜖 

 

{𝑝𝑛𝑗
} 

𝑋 
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Cauchy Sequences 

Def.  A sequence {𝑝𝑛} in a metric space 𝑋, 𝑑 is said to be a Cauchy Sequence if for 

every 𝜖 > 0 there exists an 𝑁, a positive integer, such that if 𝑚, 𝑛 ≥ 𝑁 then 

𝑑(𝑝𝑚, 𝑝𝑛) < 𝜖. 

 

Theorem:  In a metric space 𝑋, 𝑑, every convergent sequence is a Cauchy 

sequence.   

 

Proof: For  {𝑝𝑛} to be a Cauchy sequence we need to show that for every 𝜖 > 0 

there exists an 𝑁 such that if 𝑚, 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑚, 𝑝𝑛) < 𝜖. 

 If 𝑝𝑛 → 𝑝  in 𝑋, 𝑑  then given any 𝜖 > 0 there exists an 𝑁′ such that if  

𝑛 ≥ 𝑁′ then 𝑑(𝑝𝑛, 𝑝) <
𝜖

2
 .  

 

Take 𝑁 = 𝑁′.   

Since 𝑝𝑛 → 𝑝  , if 𝑚, 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑚, 𝑝) <
𝜖

2
  and  𝑑(𝑝𝑛, 𝑝) <

𝜖

2
 . 

Now let’s use the triangle inequality: 

𝑑(𝑝𝑚, 𝑝𝑛) ≤  𝑑(𝑝𝑚, 𝑝) +  𝑑(𝑝𝑛, 𝑝) <
𝜖

2
+

𝜖

2
=  𝜖  

Thus {𝑝𝑛} is a Cauchy sequence.   

 

Note:  The converse of this theorem is not true.  If {𝑝𝑛} is a Cauchy sequence it 

does not mean that 𝑝𝑛 → 𝑝  in 𝑋, 𝑑.  As an example take 𝑋 ={rational numbers} 

with the usual metric.  Now take a sequence of rational numbers that approaches 

√2,   {1, 1.4, 1.41, 1.414, 1.4142, …}.  This is a Cauchy sequence but it doesn’t 

converge in 𝑋={rational numbers}  (although it does converge in the real 

numbers). 
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Def.  A metric space in which every Cauchy sequence converges is said to be 

          Complete.  

 

Ex.  ℝ𝑘  is a complete metric space. 

 

Ex.  Let {𝑝𝑛} be a Cauchy sequence in ℝ𝑘.  Prove that {𝑐𝑝𝑛} is a Cauchy sequence 

in ℝ𝑘 for any constant 𝑐𝜖ℝ. 

 

We need to show that for {𝑐𝑝𝑛}  given any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such 

that if 𝑚, 𝑛 ≥ 𝑁 then 𝑑(𝑐𝑝𝑚, 𝑐𝑝𝑛) < 𝜖 . 

Notice that in ℝ𝑘  that if 𝑟, 𝑠𝜖ℝ𝑘  then  𝑑(𝑐𝑟, 𝑐𝑠) = |𝑐|𝑑(𝑟, 𝑠).  

 

Thus we have to show we can find an 𝑁 such that if 𝑚, 𝑛 ≥ 𝑁 then 

 𝑑(𝑐𝑝𝑚, 𝑐𝑝𝑛) < 𝜖  which is the same as:  |𝑐|𝑑(𝑝𝑚, 𝑝𝑛) < 𝜖   

Or equivalently:   𝑑(𝑝𝑚, 𝑝𝑛) <
𝜖

|𝑐|
 .          (Note: if 𝑐 = 0,   {(𝑜)(𝑝𝑛)} → 0) 

But since {𝑝𝑛} is a Cauchy sequence in ℝ𝑘, we know we can find an 𝑁′ such that if 

𝑚, 𝑛 ≥ 𝑁′ then 𝑑(𝑝𝑚, 𝑝𝑛) <
𝜖

|𝑐|
 .   

 

Choose 𝑁 = 𝑁′. 

That means that if 𝑚, 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑚, 𝑝𝑛) <
𝜖

|𝑐|
  

                      ⇒           |𝑐|𝑑(𝑝𝑚, 𝑝𝑛) < 𝜖 

  or equivalently:        𝑑(𝑐𝑝𝑚, 𝑐𝑝𝑛) < 𝜖. 

Hence  {𝑐𝑝𝑛} is a Cauchy sequence in ℝ𝑘  for any constant 𝑐𝜖ℝ. 
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Ex.  Prove {
1

𝑛+1
} is a Cauchy sequence in ℝ (with the usual metric). 

 

We need to show that given any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such that if 

 𝑚, 𝑛 ≥ 𝑁 then 𝑑(𝑝𝑚, 𝑝𝑛) = |
1

𝑚+1
−

1

𝑛+1
| < 𝜖. 

By the triangle inequality we have: 

|
1

𝑚+1
−

1

𝑛+1
| ≤

1

𝑚+1
+

1

𝑛+1
  

Since 𝑚, 𝑛 ≥ 𝑁 we know that :   

 |
1

𝑚+1
−

1

𝑛+1
| ≤

1

𝑚+1
+

1

𝑛+1
≤

1

𝑁+1
+

1

𝑁+1
 =

2

𝑁+1
 . 

 

So if we can force 
2

𝑁+1
< 𝜖, then  |

1

𝑚+1
−

1

𝑛+1
| < 𝜖 . 

Solve 
2

𝑁+1
< 𝜖 for N 

𝑁+1

2
>

1

𝜖
        since both 

2

𝑁+1
 and 𝜖 are positive 

𝑁 + 1 >
2

𝜖
  

𝑁 >
2

𝜖
− 1 . 
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We have one small technical issue that prevents us from choosing 𝑁 to be any 

integer greater than  
2

𝜖
− 1.  If  𝜖 = 5 , for example, then 

2

𝜖
− 1 < 0 and thus 0 is 

an integer greater than  
2

𝜖
− 1.  Thus we need to choose 𝑁 to be any positive  

integer greater than  
2

𝜖
− 1.  We can do that by letting 𝑁 > max (0,

2

𝜖
− 1)  

where 𝑁 is an integer.  

 

Now let’s show that this 𝑁 “works”. 

If 𝑚, 𝑛 ≥ 𝑁 > max (0,
2

𝜖
− 1) then we have: 

|
1

𝑚+1
−

1

𝑛+1
| ≤

1

𝑚+1
+

1

𝑛+1
≤

1

𝑁+1
+

1

𝑁+1
 =

2

𝑁+1
<

2
2

𝜖
−1+1

= 𝜖 

Thus {
1

𝑛+1
} is a Cauchy sequence in ℝ. 

 

Note:  As with convergence of sequences, whether a sequence is a Cauchy 

sequence can depend on which metric you use.  In the example above we 

showed that the sequence {
1

𝑛+1
} is Cauchy using the standard metric, however 

if we take the metric 𝑑(𝑝, 𝑞) = |
1

𝑝
−

1

𝑞
|;  

𝑑 (
1

𝑚+1
,

1

𝑛+1
) = |(𝑚 + 1) − (𝑛 + 1)| = |𝑚 − 𝑛| ≥ 1;   if 𝑚 ≠ 𝑛. 

Thus {
1

𝑛+1
} is NOT a Cauchy sequence with this metric. 

However, notice that the sequence {𝑛} = 1, 2, 3, 4, … is a Cauchy sequence with 

this metric since: 

           𝑑(𝑎𝑛, 𝑎𝑚) = 𝑑(𝑛, 𝑚) = |
1

𝑛
−

1

𝑚
| ≤

1

𝑛
+

1

𝑚
≤

1

𝑁
+

1

𝑁
=

2

𝑁
< 𝜖     

which can be made less than 𝜖 by choosing  𝑁 >
2
𝜖

 .   
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Ex.  Suppose {𝑏𝑗} is a Cauchy sequence in a metric space 𝑋, 𝑑 and {𝑎𝑗} is a 

sequence in 𝑋, 𝑑 such that 𝑑(𝑏𝑛, 𝑎𝑛) <
1

𝑛
 for every integer 𝑛 ≥ 1.  Then {𝑎𝑗} 

is a Cauchy sequence. 

 

Proof:  First, draw a picture: 

 

We need to show that given any given any 𝜖 > 0 there exists an 𝑁 ∈ ℤ+  such 

that if 𝑝, 𝑞 ≥ 𝑁 then  𝑑(𝑎𝑝, 𝑎𝑞) < 𝜖. 

We know something about 𝑑(𝑏𝑛, 𝑎𝑛) for any positive integer 𝑛, and 𝑑(𝑏𝑝, 𝑏𝑞) 

because {𝑏𝑗} is a Cauchy sequence.  So we need to relate these distances to 

𝑑(𝑎𝑝, 𝑎𝑞).  As is frequently the case, the triangle inequality works. 

If we apply the triangle inequality to 𝑎𝑝, 𝑎𝑞, and 𝑏𝑝 we get: 

𝑑(𝑎𝑝, 𝑎𝑞) ≤ 𝑑(𝑎𝑝, 𝑏𝑝) + 𝑑(𝑏𝑝, 𝑎𝑞).  

  

𝑎1 

𝑎2 

 
𝑎3 

 

𝑎4 

 

𝑎5 

 

𝑏1 

𝑏2 

 

𝑏3 

 

𝑏4 

 

𝑏5 

 

𝑋 
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The problem is we don’t know anything about 𝑑(𝑏𝑝, 𝑎𝑞).  However, if we 

apply the triangle inequality a second time to 𝑏𝑝, 𝑎𝑞 and 𝑏𝑞 we get: 

𝑑(𝑏𝑝, 𝑎𝑞) ≤ 𝑑(𝑏𝑝, 𝑏𝑞 ) + 𝑑(𝑏𝑞 , 𝑎𝑞).  

Combining the two triangle inequalitites we get: 

𝑑(𝑎𝑝, 𝑎𝑞) ≤ 𝑑(𝑎𝑝, 𝑏𝑝) + 𝑑(𝑏𝑝, 𝑎𝑞) ≤ 𝑑(𝑎𝑝, 𝑏𝑝) + 𝑑(𝑏𝑝, 𝑏𝑞 ) + 𝑑(𝑏𝑞 , 𝑎𝑞).  

 

If we can force each term on the RHS to be less than 
𝜖

3
 we’ll be in business. 

 

Since {𝑏𝑗} is a Cauchy sequence we know that given any any 𝜖 > 0 there exists 

an 𝑁1 ∈ ℤ+ such that if 𝑝, 𝑞 ≥ 𝑁1 then 𝑑(𝑏𝑝, 𝑏𝑞 ) <
𝜖

3
 . 

 

We also know that 𝑑(𝑎𝑝, 𝑏𝑝) <
1

𝑝
  and 𝑑(𝑏𝑞 , 𝑎𝑞) <

1

𝑞
   (that was given). 

To guarantee that 
1

𝑝
< 

𝜖

3
   and 

1

𝑞
< 

𝜖

3
  we just need to ensure that 𝑝 >

3

𝜖
 and      

𝑞 >
3

𝜖
 .     

 If we choose 𝑁2 >
3

𝜖
 , then if 𝑝, 𝑞 ≥ 𝑁2 then 𝑑(𝑏𝑝 , 𝑎𝑝) <

3

𝜖
 and 𝑑(𝑏𝑞 , 𝑎𝑞) <

3

𝜖
  

 

Finally, choose 𝑁 = max (𝑁1,𝑁2).  Thus if 𝑝, 𝑞 ≥ 𝑁 we have: 

𝑑(𝑎𝑝, 𝑎𝑞) ≤ 𝑑(𝑎𝑝, 𝑏𝑝) + 𝑑(𝑏𝑝, 𝑏𝑞 ) + 𝑑(𝑏𝑞 , 𝑎𝑞) <
𝜖

3
+  

𝜖

3
+

𝜖

3
= 𝜖  

Thus {𝑎𝑗} is a Cauchy sequence. 


