## Sequences

If no metric is stated for  $\mathbb{R}$  or  $\mathbb{R}^n$ , we will always assume the standard metric.

Def. A sequence  $\{p_n\}$  in a metric space X is said to **converge** if there is a point  $p \in X$  such that for all  $\epsilon > 0$ , there exists an N, a positive integer, such that if

$$n \ge N$$
 then  $d(p_n, p) < \epsilon$ .

In this case we say that  $\lim_{n o \infty} p_n = p.$ 

If  $\{p_n\}$  does not converge, we say that  $\{p_n\}$  diverges.



Ex. Let  $\{p_n\} = \{\frac{1}{n}\}$ , i.e.,  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$ 

then  $\lim_{n \to \infty} p_n = \lim_{n \to \infty} \frac{1}{n} = 0$  (we know this from one variable calculus)

Ex. Let 
$$\{p_n\} = \{2n + 1\}$$
, i.e., 3,5,7,9,11, ...,  $2n + 1$ , ...

This sequence is unbounded and does not converge.

Ex. Let  $\{p_n\} = \{(-1)^n\}$ , i.e., -1, 1, -1, 1, -1, 1, ...,  $(-1)^n$ , ...

This sequence is bounded, but does not converge.

Ex. Let 
$$\{p_n\} = \{\frac{(-1)^n}{n}\}$$
, i.e.,  $-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, ..., \frac{(-1)^n}{n}, ...$   
$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$$

In one variable calculus we compute limits using limit theorems. Here we want to be able to prove that a limit statement is correct using the definition of a convergent sequence given above.

Ex. Prove that  $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$  from the definition of a convergent sequence. -1  $-\frac{1}{3}$   $-\frac{1}{5}$  0  $\frac{1}{4}$   $\frac{1}{2}$ 

Proof: We must show that given any  $\epsilon > 0$  we can find a  $N \in \mathbb{Z}^+$  (which generally depends on  $\epsilon$ ) such that if  $n \ge N$  then  $d(p_n, p) = |p_n - p| < \epsilon$ .

In this case,  $p_n = \frac{(-1)^n}{n}$  and p = 0. So we have to find a N, such that if  $n \ge N$  then  $\left|\frac{(-1)^n}{n} - 0\right| < \epsilon$ .

If we simplify the last inequality we get:  $\frac{1}{n} < \epsilon$  since n > 0.

Solving this inequality for n we get:  $n > \frac{1}{\epsilon}$ .

Now if we just choose  $N > \frac{1}{\epsilon}$ , we would essentially be done because:

$$n \ge N$$
 means that  $\frac{1}{n} \le \frac{1}{N} < \epsilon$  (since  $N > \frac{1}{\epsilon}$ ).  
For example, if  $\epsilon = 0.001$ , we could choose  $N > \frac{1}{0.001} = 1000$ .  
So in this case we could choose  $N$ =1001 and then for any  $n \ge 1001$ ,

$$\frac{1}{n} \le \frac{1}{1001} < 0.001.$$

If  $\epsilon = 0.00001$ , we could choose  $N > \frac{1}{0.00001} = 100,000$ .

In this case we could choose N = 100,001 and then for any  $n \ge 100,001$ ,

$$\frac{1}{n} \le \frac{1}{100,001} < 0.00001 \; .$$

Thus if  $N > \frac{1}{\epsilon}$  then we have:  $\left|\frac{(-1)^n}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N} < \epsilon$ 

Hence,  $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$ 

So when we are proving a sequence of real numbers converges (with the standard metric) to some limit in  $\mathbb{R}$ , we must find a formula for N in terms of  $\epsilon$ , that will ensure that if  $n \ge N$  then  $|p_n - p| < \epsilon$ .

Ex. Prove that the sequence 
$$\{\frac{n}{n+1}\}$$
 converges to 1, i.e.  $\lim_{n \to \infty} \frac{n}{n+1} = 1$ .  

$$0 \qquad \qquad \frac{1}{2} \qquad \qquad \frac{2}{3} \qquad \frac{3}{4} \qquad \frac{4}{5} \qquad \qquad 1$$

We must show that given any  $\epsilon > 0$  we can find N such that if  $n \ge N$  then

$$|p_n - p| = \left|\frac{n}{n+1} - 1\right| < \epsilon.$$

We start with the epsilon statement and try to solve the inequality for n.

$$\left|\frac{n}{n+1} - 1\right| = \left|\frac{n - (n+1)}{n+1}\right| = \left|\frac{-1}{n+1}\right| = \frac{1}{n+1} < \epsilon$$

This is equivalent to:  $n+1 > \frac{1}{\epsilon}$ 

$$n > \frac{1}{\epsilon} - 1$$

Now we might be tempted to let  $N > \frac{1}{\epsilon} - 1$ , and that's almost right. We have one small problem. If  $\epsilon = 10$ , for example,  $\frac{1}{\epsilon} - 1$  is a negative number. So just choosing  $N > \frac{1}{\epsilon} - 1$  would also include N = 0 (but N is a positive integer).

We can get around this problem by letting  $N > \max(0, \frac{1}{\epsilon} - 1)$ .

Let's show that this choice of N works.

If 
$$n \ge N$$
 then:  $\left|\frac{n}{n+1} - 1\right| = \frac{1}{n+1} < \frac{1}{\frac{1}{\epsilon} - 1 + 1} = \epsilon$   
So  $\lim_{n \to \infty} \frac{n}{n+1} = 1$ .

Notice that which metric we use can matter when it comes to convergence.

If we take the sequence  $\{\frac{n}{n+1}\}$  but use the metric,

$$d(p,q) = 1 \quad \text{if } p \neq q$$
$$= 0 \quad \text{if } p = q$$

then  $d\left(\frac{n}{n+1}, 1\right) = 1$  for all n. Thus with this metric  $\left\{\frac{n}{n+1}\right\}$  does NOT converge to 1.

Ex. Prove that 
$$\lim_{n \to \infty} \frac{n}{n+1} \neq \frac{1}{3}$$
.

We will eventually show that if a limit exists it is unique and therefore by our previous example the limit can't be  $\frac{1}{3}$ , but for now we will show this directly. To show a limit doesn't exist, we need to find some  $\epsilon > 0$  so that no matter what N we choose,  $n \ge N$  can't ensure that  $\left|\frac{n}{n+1} - \frac{1}{3}\right| < \epsilon$ .

So how do we choose this  $\epsilon$ ? For  $\epsilon$  just choose a number so that an interval of that radius  $\epsilon$  around the "false" limit (in this case  $\frac{1}{3}$ ) doesn't include the actual limit (in this case 1).

In this case any 
$$\epsilon$$
 less than  $1 - \frac{1}{3} = \frac{2}{3}$  will work. So let's take  $\epsilon = \frac{1}{4} < \frac{2}{3}$ 



Now let's show that there does <u>not</u> exist a N such that if  $n \ge N$  then

$$\left|\frac{n}{n+1} - \frac{1}{3}\right| < \frac{1}{4}.$$

We can do this by showing that for n bigger than some number M, that

$$\left|\frac{n}{n+1} - \frac{1}{3}\right| > \frac{1}{4}.$$

Let's solve this inequality.

$$\left|\frac{n}{n+1} - \frac{1}{3}\right| = \left|\frac{2n-1}{3(n+1)}\right| > \frac{1}{4}$$
  
For any positive integer  $n$ ,  $\frac{2n-1}{3(n+1)} > 0$ , so  $\left|\frac{2n-1}{3(n+1)}\right| = \frac{2n-1}{3(n+1)}$   
 $\frac{2n-1}{3(n+1)} > \frac{1}{4}$   
 $4(2n-1) > 3n+3$   
 $8n-4 > 3n+3$   
 $5n > 7$   
 $n > \frac{7}{5}$ 

Thus we have shown that for  $n > \frac{7}{5}$ ,  $\left|\frac{n}{n+1} - \frac{1}{3}\right| > \frac{1}{4}$ .

That means that there is no positive integer N such that if  $n \ge N$  then

$$\left|\frac{n}{n+1} - \frac{1}{3}\right| < \frac{1}{4}.$$
  
Thus  $\lim_{n \to \infty} \frac{n}{n+1} \neq \frac{1}{3}.$ 

Ex. Prove that  $\lim_{n \to \infty} e^{\frac{1}{n}} = 1$ .

We must show that given any  $\epsilon > 0$  we can find a N such that if  $n \ge N$  then

$$|e^{\frac{1}{n}}-1| < \epsilon.$$

Start by solving this inequality for n (what can we say about the sign of  $e^{\frac{1}{n}} - 1$  if n is a positive integer?)

$$\begin{split} |e^{\frac{1}{n}} - 1| &= e^{\frac{1}{n}} - 1 < \epsilon \\ &e^{\frac{1}{n}} < \epsilon + 1 \quad \text{Now take natural logs of both sides} \\ &\ln\left(e^{\frac{1}{n}}\right) < \ln(\epsilon + 1) \\ &\frac{1}{n} < \ln(\epsilon + 1) \quad \text{Since both sides are positive we get} \\ &n > \frac{1}{\ln(\epsilon + 1)}. \end{split}$$
Let  $N > \frac{1}{\ln(\epsilon + 1)}$ . Now let's show that if  $n \ge N$  then  $|e^{\frac{1}{n}} - 1| < \epsilon$ .  
 $n \ge N > \frac{1}{\ln(\epsilon + 1)}$  Now let's work the steps above backwards.  
 $\frac{1}{n} < \ln(\epsilon + 1)$   
 $e^{\frac{1}{n}} < \epsilon + 1$   
 $e^{\frac{1}{n}} - 1 < \epsilon$ ; But since  $n > 0$ ,  $e^{\frac{1}{n}} - 1 = |e^{\frac{1}{n}} - 1|$ , so  
 $|e^{\frac{1}{n}} - 1| < \epsilon$ .

Theorem: Let  $\{p_n\}$  be a sequence in a metric space X, d.

a.  $\{p_n\} \rightarrow p \in X$  if and only if every neighborhood of p contains  $p_n$  for all but a finite number of n.

- b. If  $p \in X$ ,  $p' \in X$ , and if  $\{p_n\}$  converges to p and to p', then p = p'.
- c. If  $\{p_n\}$  converges, then  $\{p_n\}$  is bounded.

Proof: a. First we show if  $\{p_n\} \rightarrow p \in X$  then every neighborhood of p contains all but a finite number of the  $p_n$ 's.

Let V be any neighborhood of p.



Since V is a neighborhood of p, for some  $\epsilon > 0$ ,  $d(p,q) < \epsilon$  implies that  $q \epsilon V$ . By the definition of convergence, there exists an N such that if  $n \ge N$  then  $d(p_n, p) < \epsilon$ .

So for  $n \ge N$ ,  $p_n \epsilon V$ . Thus V contains  $p_n$  for all but a finite number of n.

Now let's show that if every neighborhood of p contains all but a finite number of the  $p_n$ 's, then  $\{p_n\} \rightarrow p \epsilon X$ .

 $\begin{array}{c} & p_1 \\ & p_2 \\ & p_3 \\ & & & \\ \end{array}$ 

By assumption, V contains all but a finite number of the  $p_n$ 's, thus for some N, if  $n \ge N$  then  $p_n \epsilon V$  and hence  $d(p_n, p) < \epsilon$ . Hence  $\{p_n\} \to p \epsilon X$ .

b. Let  $\epsilon > 0$  be given. Since  $\{p_n\}$  converges to both p and p', there exist N, N' such that if:



Fix an  $\epsilon > 0$  and let V be the set of all q such that  $d(p,q) < \epsilon$ .

c. Suppose  $\{p_n\} \to p$ . Since  $\{p_n\} \to p$  we know that there is a N such that if



Let  $r = Max(1, d(p_1, p), d(p_2, p), d(p_3, p), \dots, d(p_{N-1}, p)).$ Then  $d(p_n, p) \le r$  for all n and  $\{p_n\}$  is bounded.

Ex. Suppose  $\lim_{n\to\infty} a_n = 0$ ,  $\{a_n\}$  is a sequence of real numbers. Prove that  $\lim_{n\to\infty} (a_n)^2 = 0$ .

Proof: We need to show that given any  $\epsilon > 0$  we can find an N such that if  $n \ge N$ then  $|(a_n)^2 - 0| < \epsilon$  or  $|a_n| < \sqrt{\epsilon}$ .

Since  $\lim_{n\to\infty} a_n = 0$ , we know that we can find an N' such that if  $n \ge N'$  then  $|a_n - 0| < \sqrt{\epsilon}$ ; ie  $|a_n| < \sqrt{\epsilon}$ .

Choose N = N'.

 $n \ge N$  then  $d(p_n, p) < 1$ .

Thus given any  $\epsilon > 0$  we can find an N such that if  $n \ge N = N'$ 

$$\begin{split} |a_n| &< \sqrt{\epsilon} \text{ which implies } |a_n|^2 < \epsilon \text{ or } |(a_n)^2 - 0| < \epsilon \text{ .} \\ \text{Thus } \lim_{n \to \infty} (a_n)^2 &= 0. \end{split}$$

Ex. Let  $\{a_n\}$ ,  $\{b_n\}$  be sequences in a metric space X, d where  $\{a_n\} \to a$  and  $\{b_n\} \to b$ . Assume that  $d(a_n, b_n) < \frac{1}{n-1}$  for  $n \ge 2$ . Prove that a = b.

First draw a picture:



To prove that a = b, we just need to show that d(a, b) can be made arbitrarily small, i.e., given any  $\epsilon > 0$ ,  $d(a, b) < \epsilon$ .

The "trick" here is to relate d(a, b) to  $d(a, a_n)$ ,  $d(b_n, b)$  (which we know something about because  $\{a_n\} \to a$ ,  $\{b_n\} \to b$ ) and  $d(a_n, b_n)$  (which we know is  $< \frac{1}{n-1}$ ).

This relationship will come from the triangle inequality. Notice that:

using the triangle inequality on a,  $a_n$ , and b we get:

$$d(a,b) \le d(a,a_n) + d(a_n,b).$$

Notice that if we apply the triangle inequality to  $a_n$ , b, and  $b_n$  we get:

$$d(a_n, b) \le d(a_n, b_n) + d(b_n, b).$$

Combining these 2 inequalities we get:

$$d(a,b) \le d(a,a_n) + d(a_n,b_n) + d(b_n,b).$$

Now if we can show that the RHS is  $< \epsilon$ , for  $n \ge N$ , we'll be done.

Since  $\{a_n\} \to a$ , we can find an  $N_1$  such that if  $n \ge N_1$ ,  $d(a, a_n) < \frac{\epsilon}{3}$ . Since  $\{b_n\} \to b$ , we can find an  $N_2$  such that if  $n \ge N_2$ ,  $d(b_n, b) < \frac{\epsilon}{3}$ .

We need to show that we can find an  $N_3$  such that if  $n \ge N_3$ ,  $d(a_n, b_n) < \frac{\epsilon}{3}$ . But we know that  $d(a_n, b_n) < \frac{1}{n-1}$ . So we just need  $\frac{1}{n-1} < \frac{\epsilon}{3}$ . Solving this inequality we get  $n > \frac{3}{\epsilon} + 1$ . So take  $N_3 > \frac{3}{\epsilon} + 1$ .

Now let  $N = \max(N_1, N_2, N_3)$ . If  $n \ge N$  then  $d(a, b) \le d(a, a_n) + d(a_n, b_n) + d(b_n, b) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$ .

So a = b.

The triangle inequality,  $|a + b| \le |a| + |b|$ , for any real numbers a and b, is one of the most useful relationships in Analysis. There is a related inequality that follows from the triangle inequality that is also quite useful, particularly when dealing with absolute value functions.

Proposition: For any real numbers *a* and *b*,  $||a| - |b|| \le |a - b|$ .

Proof: If  $|a| \ge |b|$ , then by the triangle inequality:

$$|a| = |(a - b) + b| \le |a - b| + |b|$$
$$|a| - |b| \le |a - b|.$$
But since  $|a| \ge |b|$ ,  $|a| - |b| = ||a| - |b||$ , so
$$||a| - |b|| \le |a - b|.$$

If  $|b| \ge |a|$  then by the triangle inequality:

$$\begin{aligned} |b| &= |(b-a) + a| \le |a - b| + |a| \\ |b| - |a| \le |a - b| \end{aligned}$$
  
But since  $|b| \ge |a|, |b| - |a| = ||b| - |a|| = ||a| - |b||, so 
$$||a| - |b|| \le |a - b|. \end{aligned}$$$ 

Ex. Suppose  $\{a_n\}$  is a sequence of real numbers and  $\lim_{n\to\infty} a_n = L$ . Prove that  $\lim_{n\to\infty} |a_n| = |L|$ .

We must show given any  $\epsilon > 0$  there exists an  $N \in \mathbb{Z}^+$  such that if  $n \ge N$  then  $||a_n| - |L|| < \epsilon$ .

However, since  $\lim_{n\to\infty} a_n = L$ , we know given any  $\epsilon > 0$  there exists an  $N' \in \mathbb{Z}^+$  such that if  $n \ge N'$  then  $|a_n - L| < \epsilon$ .

Using the inequality we just proved from the triangle inequality we get:

$$\left||a_n| - |L|\right| \le |a_n - L|.$$

Thus if we choose N = N' then  $n \ge N = N'$  means that

$$\left||a_n| - |L|\right| \le |a_n - L| < \epsilon.$$

Thus  $\lim_{n \to \infty} |a_n| = |L|.$ 

Theorem: Suppose  $\{s_n\}, \{t_n\}$  are real (or complex) sequences and  $\lim_{n \to \infty} s_n = s$ 

- and  $\lim_{n \to \infty} t_n = t$  then
- a.  $\lim_{n \to \infty} (s_n + t_n) = s + t$
- b.  $\lim_{n \to \infty} c s_n = cs$  and  $\lim_{n \to \infty} (c + s_n) = c + s$ ; where *c* is any constant.
- c.  $\lim_{n \to \infty} s_n t_n = s t$
- d.  $\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}$ ; provided  $s_n \neq 0$  for any n;  $s \neq 0$ .

Proof of a. and b.:

a. Given any  $\epsilon > 0$  we need to show that there is N such that  $n \ge N$  implies:  $|(s_n + t_n) - (s + t)| < \epsilon$ .

Since  $\lim_{n \to \infty} s_n = s$  and  $\lim_{n \to \infty} t_n = t$  we know that

Given  $\epsilon > 0$  there exists integers  $N_1$ ,  $N_2$  such that:

- $n \ge N_1$  implies that  $|s_n s| < \frac{\epsilon}{2}$
- $n \ge N_2$  implies that  $|t_n t| < \frac{\epsilon}{2}$ .

If  $N = \max(N_1, N_2)$  then  $n \ge N$  implies:

 $|(s_n + t_n) - (s + t)| \le |s_n - s| + |t_n - t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ 

So  $\lim_{n\to\infty}(s_n+t_n)=s+t.$ 

b. 1. Given any  $\epsilon > 0$  we need to show that there is N such that  $n \ge N$  implies:

$$|cs_n - cs| < \epsilon$$
 or equivalently  $|c||s_n - s| < \epsilon$  or  $|s_n - s| < \frac{\epsilon}{|c|}$ .

Since  $\lim_{n \to \infty} s_n = s$ , we know for any  $\epsilon > 0$  we can find an N such that  $n \ge N$ implies:  $|s_n - s| < \frac{\epsilon}{|c|}$ . Thus for that  $N, n \ge N$  implies:  $|c||s_n - s| < \epsilon$  or  $|cs_n - cs| < \epsilon$ Thus  $\lim_{n \to \infty} c s_n = cs$ .

2. Given any  $\epsilon > 0$  we need to show that there is N such that  $n \ge N$  implies:  $|(c + s_n) - (c + s)| < \epsilon$  or equivalently  $|s_n - s| < \epsilon$ 

Since  $\lim_{n \to \infty} s_n = s$ , we know for any  $\epsilon > 0$  we can find an N' such that  $n \ge N'$ implies:  $|s_n - s| < \epsilon$ .

If we take N = N', then  $n \ge N$  implies:  $|(c + s_n) - (c + s)| < \epsilon$ .