Compact Sets and Connected Sets

Compact Sets

Def. By an **open cover** of a set $E \subseteq X$, a metric space, we mean a collection $\{G_{\alpha}\}$ of open sets in X such that $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Ex. Let $G_i = (0, i) \subseteq \mathbb{R}$. Then $\{G_i\}_{i=1}^{\infty}$ is an open cover of $(0, \infty)$ (it's also an open cover of (0, n), [1,7], *etc*.)

Ex. Let $G_i = \{(x, y) | (x - i)^2 + y^2 < 1\}, i = 0, 1, 2, 3. \{G_i\}_{i=0}^3$ is an open cover of $R = \{(x, y) | 0 \le x \le 3.5, 0 \le y \le \frac{1}{2}\}.$

Def. A subset $K \subseteq X$, d is said to be **compact** if every open cover contains a finite subcover.

This means that if $\{G_{\alpha}\}$ is any open cover of K, i.e., $K \subseteq \bigcup_{\alpha} G_{\alpha}$, then there exist $G_{i_1}, G_{i_2}, \dots, G_{i_n}$ such that $K \subseteq G_{i_1} \cup G_{i_2} \cup \dots \cup G_{i_n}$.

Open Cover of *K*

Finite Subcover of *K*

Ex. Let $K = (0,1) \subseteq \mathbb{R}$. Show K is not compact.

To show a set is not compact we just need to show that we can find an open cover that does not have a finite subcover.

Notice that $\bigcup_{i=1}^{\infty} G_i = (0,1)$, therefore, $\{G_i\}$ is an open cover of (0,1).

Suppose there was a finite subcover of the $\{G_i\}$, made up of the intervals:

$$(a_1, b_1), (a_2, b_2), (a_3, b_3), ..., (a_n, b_n).$$

Let $m = \min(a_1, a_2, ..., a_n)$.

Then the number $\frac{m}{2} \notin \bigcup_{i=1}^{n} (a_i, b_i)$, but $\frac{m}{2} \in (0,1)$.

Hence, (a_1, b_1) , (a_2, b_2) , (a_3, b_3) , ..., (a_n, b_n) is not an open cover of (0,1).

Thus *K* is not compact.

Theorem: Compact subsets of metric spaces are closed.

Proof: Let $K \subseteq X$, d be a compact subset of a metric space X.

In order to show that K is closed, we will show that K^c is open.

Suppose $p \in X$, but $p \notin K$, and $q \in K$.

For each point $q \in K$, let V_q and W_q be neighborhoods of p and q with radii less than $\frac{1}{2}d(p,q)$.

K. P V_q W_q W_q K V_q X

Thus we know $V_q \cap W_q = \emptyset$.

We also have that $K \subseteq \bigcup_{q \in K} W_q$;

Since *K* is compact we know that there is some finite number of q_i 's with:

V is an open set (finite intersection of open sets) containing *p* and *V* does not intersect *K*: If $x \in K$ then $x \in W_{q_i}$ for some i. But $V_{q_i} \cap W_{q_i} = \emptyset$. So $x \notin V_{q_i}$ and hence $x \notin V_{q_1} \cap V_{q_2} \cap ... \cap V_{q_n} = V$.

Thus $V \subseteq K^c$ and K^c is open.

Since K^c is open, K is closed.

Theorem: Closed subsets of compact sets are compact.

Proof: Let *F* be a closed subset of a compact set $K \subseteq X$, *d* a metric space.

Let $\{V_{\alpha}\}$ be an open cover of $F \subseteq K$.

Since F is closed, F^c is open.

 $F^{c} \cup_{\alpha} V_{\alpha}$ is now an open cover of K (as well as F).

Since *K* is compact, we know there we only need a finite number of $F^c \cup_{\alpha} V_{\alpha}$ to cover *K*.

Case 1: $F \subseteq K \subseteq F^c \cup V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$

But $F^c \cap F = \emptyset$, so F^c is not need to cover F.

Hence $F \subseteq V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$, which is a finite subcover of $\{V_{\alpha}\}$

Case 2: $F \subseteq K \subset V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$ (we don't need F^c) In this case $V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$ is already a finite subcover of $\{V_{\alpha}\}$. In either case we have shown that F is compact.

This theorem implies that finite intersections of compact sets are compact.

Theorem: Every compact subset E of a metric space X is bounded.

Proof: Let $\{G_{\alpha}\}$ be a collection of open sets $G_{\alpha} = N_{\frac{1}{2}}(x_{\alpha})$, where $x_{\alpha} \in E$.

Thus, $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Since *E* is compact we can find a finite subcover $E \subseteq G_{\alpha_1} \cup G_{\alpha_2} \cup ... \cup G_{\alpha_n}$. Take $x_{\alpha_1} \in G_{\alpha_1}$, where x_{α_1} is the center of $G_{\alpha_1} = N_{\frac{1}{2}}(x_{\alpha_1})$.

Then if $y \in E$, $y \in G_{\alpha_j}$, for some $1 \le j \le n$.

Then by the triangle inequality we have:

$$d(x_{\alpha_{1}}, y) \leq \sum_{i=1}^{j-1} d(x_{\alpha_{i}}, x_{\alpha_{i+1}}) + \frac{1}{2} \leq \sum_{i=1}^{n} d(x_{\alpha_{i}}, x_{\alpha_{i+1}}) + \frac{1}{2}$$

so *E* is bounded.

Heine-Borel Theorem: If E is a set in \mathbb{R}^n then E is compact if and only if E is closed and bounded.

Ex. Identify which of the following subsets of \mathbb{R}^2 are compact:

$$A = \{(x, y) | |x| \le 2, |y| \le 1\}$$
Yes, closed and bounded

 $B = \{(x, y) | |x| = 2, |y| \le 1\}$
Yes, closed and bounded

 $C = \{(x, y) | |x| = 2, |y| \ge 1\}$
No, not bounded

 $D = \{(x, y) | 0 < x^2 + y^2 \le 4\}$
No, not closed

 $E = \{(x, y) | |x| = 3\}$
No, not bounded

 $F = \{(0,0), (0,1), (1,0)\}$
Yes, closed and bounded

Connected Sets

Def. Two subsets A, B of a metric space X, d are said to be **separated** if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$ (i.e., no point of A lies in the closure of B and no point of B lies in the closure of A).

Def. A set $E \subseteq X$, d a metric space is said to be **connected** if E is not the union of two nonempty separated sets.

Ex. if A = (0,1) and B = (1,2), then A and B are separated sets since $\overline{A} = [0,1], \overline{B} = [1,2]$ thus: $A \cap \overline{B} = (0,1) \cap [1,2] = \emptyset$ and $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset$. Thus the set $A \cup B = (0,1) \cup (1,2)$ is not a connected set.

Ex. If A = (0,1] and B = (1,2), then A and B are not separated since $\overline{B} = [1,2]$ and thus

$$A \cap \overline{B} = (0,1] \cap [1,2] = \{1\} \neq \emptyset$$

(notice that $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset$).

Theorem: A subset $E \subseteq \mathbb{R}$ is connected if and only if , if $x \in E$, $y \in E$ and x < z < y then $z \in E$.

Ex. The Cantor Set is a subset of the interval [0,1], with very interesting properites. Here's how it's created.

Let I = [0,1]. Remove the open middle third segment $(\frac{1}{3}, \frac{2}{3})$ and let $E_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$. $E_1 = \begin{bmatrix}0, \frac{1}{3}\end{bmatrix} \cup \left[\frac{2}{3}, 1\right]$.

Now remove the open middle thirds of each part above. Let

Continue this way always removing open middle thirds of each segment to get

 $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$. The Cantor set is defined to be:

$$C = \bigcap_{i=1}^{\infty} E_i$$

where E_n is the union of 2^n intervals, each of length 3^{-n} .

Properites of the Cantor set.

- C is compact because since each of the E_i's is closed (a finite union of closed sets), C = ∩_{i=1}[∞] E_i is also closed. But C is also a bounded subset of ℝ, so C is also compact.
- 2. Let x = 0. $a_1 a_2 a_3$... be a base 3 expansion of any number $x \in [0,1]$, i.e. $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$; where $a_i = 0, 1, or 2$. Then $x \in C$ if and only if $a_i = 0$ or 2.
- 3. *C* is uncountable. Suppose *C* is countable, then $C = \{x_1, x_2, x_3, ...\}$. $x_1 = 0. a_{11}a_{12}a_{13} ...$ $x_2 = 0. a_{21}a_{22}a_{23} ...$: $x_k = 0. a_{k1}a_{k2}a_{k3} ...$: where $a_{ij} = 0 \text{ or } 2$ for all *i*, *j*. Let $y = 0. b_1b_2b_3 ...$ where $b_i = 0$ if $a_{ii} = 2$ = 2 if $a_{ii} = 0$

Then y is not equal to x_k for any k, which is a contradiction.

4. C has "measure" (i.e., "length") 0.

[0,1] has length 1. Let's add up the lengths of the sets removed from [0,1] to create the Cantor set.

Length of sets removed from
$$[0,1] = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots + \frac{2^{n-1}}{3^n} + \dots$$

$$= \frac{1}{3} \left(1 + \frac{2}{3} + \frac{4}{9} + \dots + \frac{2^n}{3^n} + \dots \right)$$
$$= \frac{1}{3} \left(\frac{1}{1 - \frac{2}{3}} \right) = 1.$$

Thus, the Cantor set must have measure (i.e., length) 0. Thus the Cantor set is an uncountable set (i.e. it can be put in 1-1 correspondence with [0,1]) with measure 0!

5. *C* contains no intervals. That is, no subset of *C* is connected. If *C* did contain any interval (a, b), b > a, then the measure of *C* couldn't be 0 since the measure of (a, b) is |b - a| > 0.