Compact Sets and Connected Sets

Compact Sets

Def. By an **open cover** of a set $E \subseteq X$, a metric space, we mean a collection ${G_{\alpha}}$ of open sets in X such that $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Ex. Let $G_i = (0,i) \subseteq \mathbb{R}$. Then $\{G_i\}_{i=1}^{\infty}$ is an open cover of $(0,\infty)$ (it's also an open cover of $(0, n)$, $[1, 7]$, etc.)

Ex. Let $G_i = \{(x, y) | (x - i)^2 + y^2 < 1\}, i = 0, 1, 2, 3$. $\{G_i\}_{i=0}^3$ is an open cover of $R = \{(x, y) | 0 \le x \le 3.5, 0 \le y \le \frac{1}{2}\}$

Def. A subset $K \subseteq X$, d is said to be **compact** if every open cover contains a finite subcover.

This means that if $\{G_\alpha\}$ is any open cover of K, i.e., $K \subseteq \bigcup_\alpha G_\alpha$, then there exist $G_{i_1}, G_{i_2}, ..., G_{i_n}$ such that $K \subseteq G_{i_1} \cup G_{i_2} \cup ... \cup G_{i_n}.$

Open Cover of K Finite Subcover of K

Ex. Let $K = (0,1) \subseteq \mathbb{R}$. Show K is not compact.

To show a set is not compact we just need to show that we can find an open cover that does not have a finite subcover.

0 1 6 1 5 1 4 1 3 1 2 1 Let = (1 +2 , 1). So we have: ¹ = (1 3 , 1), ² = (1 4 , 1 2), ³ = (1 5 , 1 3), ⁴ = (1 6 , 1 4), … ((() ())) (

Notice that $\bigcup_{i=1}^{\infty} G_i = (0,1)$ $\sum\limits_{i=1}^{\infty}G_i=(0,1)$, therefore, $\{G_i\}$ is an open cover of $(0,1).$

Suppose there was a finite subcover of the $\{G_i\}$, made up of the intervals:

$$
(a_1, b_1), (a_2, b_2), (a_3, b_3), ..., (a_n, b_n).
$$

Let $m = \min(a_1, a_2, ..., a_n)$.

Then the number $\frac{m}{2}\notin\bigcup_{i=1}^n (a_i,b_i)$ $_{i=1}^{n}(a_{i},b_{i})$, but $\frac{m}{2} \in (0,1)$.

Hence, (a_1, b_1) , (a_2, b_2) , (a_3, b_3) , ..., (a_n, b_n) is not an open cover of $(0,1).$

Thus K is not compact.

Theorem: Compact subsets of metric spaces are closed.

Proof: Let $K \subseteq X$, d be a compact subset of a metric space X.

In order to show that K is closed, we will show that K^c is open.

Suppose $p \in X$, but $p \notin K$, and $q \in K$.

For each point $q \in K$, let V_q and W_q be neighborhoods of p and q with radii less than $\frac{1}{2}d(p,q)$.

Thus we know $V_q \cap W_q = \emptyset$.

We also have that $K \subseteq \bigcup_{q \in K} W_q$;

Since K is compact we know that there is some finite number of ${q_i}^\prime$ s with:

 V is an open set (finite intersection of open sets) containing p and V does not intersect $\,K{:}\,$ If $x\epsilon K$ then $x\epsilon W_{\!q}_i$ for some i. But $V_{\!q}_i\cap W_{\!q}_i=\emptyset.$ So $x\notin V_{\!q}_i$ and hence $x \notin V_{q_1} \cap V_{q_2} \cap ... \cap V_{q_n} = V$.

Thus $V\subseteq K^c$ and K^c is open.

Since K^c is open, K is closed.

Theorem: Closed subsets of compact sets are compact.

Proof: Let F be a closed subset of a compact set $K \subseteq X$, d a metric space.

Let $\{V_\alpha\}$ be an open cover of $F \subseteq K$.

Since F is closed, $F^{\textit{c}}$ is open.

 $F^{\,c}\,\,{\cup}_\alpha\,V_\alpha$ is now an open cover of K (as well as F).

Since K is compact, we know there we only need a finite number of $F^c\cup_{\alpha} V_{\alpha}$ to cover K .

Case 1: $F \subseteq K \subseteq F^c \cup V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$

But $F^c \cap F = \emptyset$, so F^c is not need to cover F .

Hence $F\subseteq V_{\alpha_1}\cup V_{\alpha_2}\cup...\cup V_{\alpha_n}$, which is a finite subcover of $\{V_\alpha\}$

Case 2: $F \subseteq K \subset V_{\alpha_1} \cup V_{\alpha_2} \cup ... \cup V_{\alpha_n}$ (we don't need F^c) In this case $V_{\alpha_1}\cup V_{\alpha_2}\cup ... \cup V_{\alpha_n}$ is already a finite subcover of $\{V_\alpha\}.$ In either case we have shown that F is compact.

This theorem implies that finite intersections of compact sets are compact.

Theorem: Every compact subset E of a metric space X is bounded.

Proof: $\;$ Let $\{G_\alpha\}$ be a collection of open sets $G_\alpha = N_{1\over 2}$ 2 (x_{α}) , where $x_{\alpha} \epsilon E$.

Thus, $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Since E is compact we can find a finite subcover $E\subseteq G_{\alpha_1}\cup G_{\alpha_2}\cup ... \cup G_{\alpha_n}.$ Take $x_{\alpha_1} \epsilon G_{\alpha_1}$, where x_{α_1} is the center of $G_{\alpha_1} = N_{\frac{1}{2}}(x_{\alpha_1}).$

Then if $y{\in}E$, $y\in G_{\alpha_j}$, for some $1\leq j\leq n.$

Then by the triangle inequality we have:

$$
d(x_{\alpha_1}, y) \le \sum_{i=1}^{j-1} d(x_{\alpha_i}, x_{\alpha_{i+1}}) + \frac{1}{2} \le \sum_{i=1}^{n} d(x_{\alpha_i}, x_{\alpha_{i+1}}) + \frac{1}{2}
$$

so E is bounded.

Heine-Borel Theorem: If E is a set in \mathbb{R}^n then E is compact if and only if E is closed and bounded.

Ex. Identify which of the following subsets of \mathbb{R}^2 are compact:

$$
A = \{(x, y) | |x| \le 2, |y| \le 1\}
$$

\n
$$
B = \{(x, y) | |x| = 2, |y| \le 1\}
$$

\n
$$
C = \{(x, y) | |x| = 2, |y| \ge 1\}
$$

\n
$$
D = \{(x, y) | 0 < x^2 + y^2 \le 4\}
$$

\n
$$
E = \{(x, y) | |x| = 3\}
$$

\n
$$
F = \{(0, 0), (0, 1), (1, 0)\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x, y) | x = 3\}
$$

\n
$$
S = \{(x
$$

Connected Sets

Def. Two subsets A , B of a metric space X , d are said to be **separated** if $\overline{A} \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$ (i.e., no point of A lies in the closure of B and no point of B lies in the closure of A).

Def. A set $E \subseteq X$, d a metric space is said to be **connected** if E is not the union of two nonempty separated sets.

Ex. if $A = (0,1)$ and $B = (1,2)$, then A and B are separated sets since $\overline{A} = [0,1], \overline{B} = [1,2]$ thus: $A \cap \overline{B} = (0,1) \cap [1,2] = \emptyset$ and $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset.$ Thus the set $A \cup B = (0,1) \cup (1,2)$ is not a connected set.

Ex. If $A = (0,1]$ and $B = (1,2)$, then A and B are not separated since \overline{B} = [1,2] and thus

$$
A \cap \overline{B} = (0,1] \cap [1,2] = \{1\} \neq \emptyset
$$

(notice that $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset$).

Theorem: A subset $E \subseteq \mathbb{R}$ is connected if and only if , if $x \in E$, $y \in E$ and $x < z < y$ then $z \in E$.

Ex. The Cantor Set is a subset of the interval $[0,1]$, with very interesting properites. Here's how it's created.

Let $I = [0,1]$. Remove the open middle third segment $(\frac{1}{2})$ $\frac{1}{3}$, $\frac{2}{3}$ $\frac{2}{3}$) and let $E_1 = \left[0, \frac{1}{3}\right]$ $\frac{1}{3}$ U $\left[\frac{2}{3}\right]$ $\frac{2}{3}$, 1]. E_1 $\frac{5}{9}$ $\frac{2}{3}$ θ $\mathbf{1}$

Now remove the open middle thirds of each part above. Let

 $E_2 = \left[0, \frac{1}{9}\right]$ $\frac{1}{9}$ U $\frac{2}{9}$ $\frac{2}{9}, \frac{1}{3}$ $\frac{1}{3}$ ∪ $\frac{2}{3}$ $\frac{2}{3}$, $\frac{7}{9}$ $\frac{7}{9}$] ∪ $\left[\frac{8}{9}\right]$ $\frac{8}{9}$, 1]. $E₂$ E_1 1

Continue this way always removing open middle thirds of each segment to get

 $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$. The Cantor set is defined to be:

$$
C = \bigcap_{i=1}^{\infty} E_i
$$

where E_n is the union of 2^n intervals, each of length $3^{-n}.$

Properites of the Cantor set.

- 1. C is compact because since each of the E_i 's is closed (a finite union of closed sets), $C = \bigcap_{i=1}^{\infty} E_i$ $_{i=1}^{\infty} E_i$ is also closed. But C is also a bounded subset of $\mathbb R$, so C is also compact.
- 2. Let $x = 0$. $a_1 a_2 a_3 ...$ be a base 3 expansion of any number $x \in [0,1]$, i.e. $x = \sum_{i=1}^{\infty} \frac{a_i}{\partial x_i}$ 3^{i} ∞ $\frac{\partial C}{\partial i}$ where $a_i = 0, 1, or 2$. Then $x \in C$ if and only if $a_i = 0$ or 2.
- 3. *C* is uncountable. Suppose *C* is countable, then $C = \{x_1, x_2, x_3, ...\}$. $x_1 = 0$. $a_{11}a_{12}a_{13}$... $x_2 = 0. a_{21} a_{22} a_{23} ...$ ⋮ $x_k = 0. a_{k1} a_{k2} a_{k3} ...$ ⋮ where $a_{ij} = 0$ or 2 for all i, j. Let $y = 0$. $b_1 b_2 b_3 ...$ where $b_i = 0$ if $a_{ii} = 2$ $= 2$ if $a_{ii} = 0$

Then y is not equal to x_k for any k, which is a contradiction.

4. C has "measure" (i.e., "length") 0.

 $[0,1]$ has length 1. Let's add up the lengths of the sets removed from $[0,1]$ to create the Cantor set.

Length of sets removed from
$$
[0,1] = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots + \frac{2^{n-1}}{3^n} + \dots
$$

$$
= \frac{1}{3} \left(1 + \frac{2}{3} + \frac{4}{9} + \dots + \frac{2^n}{3^n} + \dots \right)
$$

$$
= \frac{1}{3} \left(\frac{1}{1 - \frac{2}{3}} \right) = 1.
$$

Thus, the Cantor set must have measure (i.e., length) 0. Thus the Cantor set is an uncountable set (i.e. it can be put in 1-1 correspondence with [0,1]) with measure 0!

5. C contains no intervals. That is, no subset of C is connected. If C did contain any interval (a, b) , $b > a$, then the measure of C couldn't be 0 since the measure of (a, b) is $|b - a| > 0$.