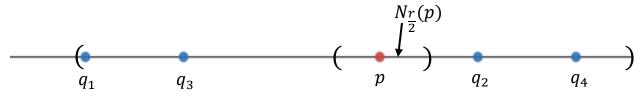
Open and Closed Sets in a Metric Space

Theorem: If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof: This is a proof by contradiction. We start by assuming that the theorem is false and derive a contradiction.

Assume that there is a neighborhood N of p, a limit point of E, that contains only a finite number of points of E. Let's call those points

 $q_1, q_2, q_3, \dots, q_n \in N \cap E$, where $q_i \neq p$ for all *i*.



Let $r = \min_{1 \le m \le n} d(p, q_m) > 0.$

Then the neighborhood $N_{\frac{r}{2}}(p)$ contains no point in *E*.

But then, p is not a limit point of E (recall that p is a limit point of E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$).

This contradicts the assumption that p is a limit point of E.

Thus the assumption that there is a neighborhood N of p that contains only a finite number of points of E, is false.

Hence every neighborhood of p contains infinitely many points of E.

Theorem: A set *E* is open if and only if its complement is closed.

Proof: We have to prove 2 statements here:

1. If E^c is closed then E is open

2. If E is open then E^c is closed

Proof of #1: We assume E^c is closed and we have to prove that E is open.

To prove *E* is open we need to show that given any point $x \in E$, we can find a neighborhood of *x*, *N*, such that $N \subseteq E$.

Since $x \in E$, $x \notin E^c$ (by definition of a complement)

Since E^c is closed (by assumption), E^c contains all of its limit points, thus x is not a limit point of E^c .

Since x is not a limit point of E^c , there exists a neighborhood, N, of x such that:

 $N \cap E^c = \emptyset$. But this means $N \subseteq E$, and thus x is an interior point of E and E is open.

Proof of #2: We assume E is open and we need to prove E^c is closed.

To prove E^c is closed we will show that E^c contains all of its limit points (definition of a closed set).

Let x be a limit point of E^c . Then every neighborhood of x contains a point $y \in E^c$.

Since every neighborhood of x contains a point $y \in E^c$, x is not an interior point of E (if x were an interior point of E, you could find a neighborhood, N, of x such that $N \subseteq E$).

Since *E* is open, by assumption, $x \notin E$ (since all points of an open set are interior points).

Since $x \notin E$, by definition, $x \in E^c$. Hence E^c is closed.

Corollary: A set F is closed if and only if F^c is open.

Proof: By the theorem we just proved, a set E is open if and only if E^{c} is closed.

This means that a set F^c is open if and only if $(F^c)^c = F$ is closed.

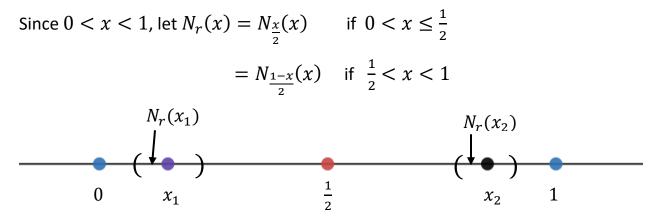
That's the same as saying: a set F is closed if and only if F^c is open.

This corollary is very useful. We will often prove a set is closed by showing that its complement is open.

Ex. Let $X = \mathbb{R}$ with the standard metric be a metric space

- a. Prove $(0,1) \subseteq \mathbb{R}$ is an open set.
- b. Prove $(-\infty, 0] \cup [1, \infty) \subseteq \mathbb{R}$ is a closed set
- c. Prove $[0,1] \subseteq \mathbb{R}$ is a closed set.

a. To show $(0,1) \subseteq \mathbb{R}$ is an open set, we must show that for every $x \in (0,1)$ we can find a neighborhood $N_r(x) \subseteq (0,1)$.



Now we must show that $N_r(x) \subseteq (0,1)$.

If $0 < x \le \frac{1}{2}$ then $N_{\frac{x}{2}}(x) = \{p \mid |x - p| < \frac{x}{2}\}$. That's the same as:

$$-\frac{x}{2} < x - p < \frac{x}{2};$$

$$-\frac{3x}{2} < -p < -\frac{x}{2}$$

$$\frac{3x}{2} > p > \frac{x}{2}$$

$$\frac{3}{4} \ge \frac{3x}{2} > p > \frac{x}{2} > 0.$$
So $N_{\frac{x}{2}}(x) \subseteq (0,1)$

Now subtract x from all quantities:

Multiply the inequality by -1

Since
$$0 < x \leq \frac{1}{2}$$
 we have:

If
$$\frac{1}{2} < x < 1$$
 then $N_{\frac{1-x}{2}}(x) = \{p | |x-p| < \frac{1-x}{2}\}$. That's the same as:

 $-\left(\frac{1-x}{2}\right) < x - p < \frac{1-x}{2} \qquad \text{Which is the same as:}$ $\frac{x-1}{2} < x - p < \frac{1-x}{2} \qquad \text{subtract } x \text{ from all quantities:}$ $\frac{-x-1}{2} < -p < \frac{1-3x}{2} \qquad \text{Multiply the inequality by -1}$ $\frac{x+1}{2} > p > \frac{3x-1}{2} \qquad \text{Since } \frac{1}{2} < x < 1 \quad \text{we have:}$ $1 > \frac{x+1}{2} > p > \frac{3x-1}{2} > \frac{1}{4}.$ So $N_{\frac{1-x}{2}}(x) \subseteq (0,1).$

2

Thus (0,1) is open.

b. To show $(-\infty, 0] \cup [1, \infty) \subseteq \mathbb{R}$ is a closed set, we just need to show that its complement is open. The complement of this set is (0,1), which we just showed is open. Thus $(-\infty, 0] \cup [1, \infty) \subseteq \mathbb{R}$ is a closed set. We could also have shown that $(-\infty, 0] \cup [1, \infty) \subseteq \mathbb{R}$ contains all of its limit points.

c. To prove $[0,1] \subseteq \mathbb{R}$ is a closed set, we can either show that [0,1] contains all of its limit points or show that its complement is open. This time we will show that the complement of [0,1], $[0,1]^c$, is open.

To show that $[0,1]^c$ is open we must show that given any point $x \in [0,1]^c$ we can find a neighborhood, $N(x) \subseteq [0,1]^c$.

Let's assume that x is in the complement of [0,1], so $x \notin [0,1]$.

Since $x \notin [0,1]$, then either x > 1 or x < 0.

Case 1: *x* > 1

Take a neighborhood of x given by $N_{\frac{x-1}{2}}(x) = \{p | |x-p| < \frac{x-1}{2}\}$

Note: $\frac{x-1}{2}$ is half the distance from x to 1. Now we have to show that $N_{\frac{x-1}{2}}(x) \subseteq [0,1]^c$. $N_{\frac{x-1}{\sqrt{2}}}(x)$ 1 х $N_{\frac{x-1}{2}}(x) = \{p | |x-p| < \frac{x-1}{2}\}$ is the same as: $-\frac{x-1}{2} < x - p < \frac{x-1}{2}$ which is the same as: $\frac{1-x}{2} < x - p < \frac{x-1}{2}$ Subtract x from all quantities $\frac{1-3x}{2} < -p < \frac{-x-1}{2}$ multiply by -1 $\frac{3x-1}{2} > p > \frac{x+1}{2}$ Since x > 1 we have: $\frac{3x-1}{2} > p > \frac{x+1}{2} > 1$ So *p* ∉ [0,1]

which means that $N_{\frac{x-1}{2}}(x) \subseteq [0,1]^c$.

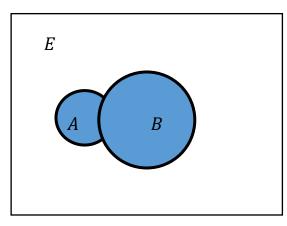
Case 2: x < 0

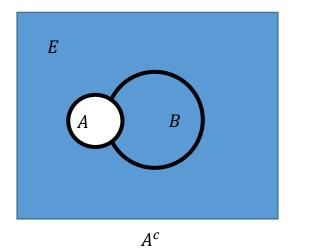
Take a neighborhood of x given by $N_{\frac{|x|}{2}}(x) = \{p \mid |x - p| < \frac{|x|}{2}\}$ Note: $\frac{|x|}{2}$ is $\frac{1}{2}$ the distance from x to 0. $N_{|x| \over 2}(x)$ **]** 1 $N_{\frac{|x|}{2}}(x) = \{p \mid |x - p| < \frac{|x|}{2}\}$ is the same as: $|x - p| < \frac{|x|}{2}$ since x < 0 we know $\frac{|x|}{2} = -\frac{x}{2}$ $|x-p| < \frac{-x}{2}$ which is the same as: $\frac{x}{2} < x - p < \frac{-x}{2}$ Subtract x from all quantities $\frac{-x}{2} < -p < \frac{-3x}{2}$ Multiply by -1 $\frac{x}{2} > p > \frac{3x}{2}$ since x < 0 we have $0 > \frac{x}{2} > p > \frac{3x}{2}$ So $p \notin [0,1]$

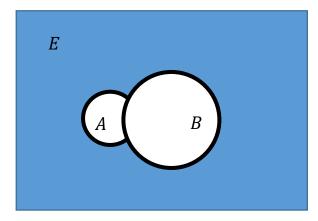
which means that $N_{\frac{|x|}{2}}(x) \subseteq [0,1]^c$

Thus $[0,1]^c$ is open.

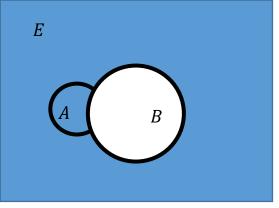
The next theorem is a generalization of one of De Morgan's laws, $(A \cup B)^c = A^c \cap B^c$, which is illustrated below.

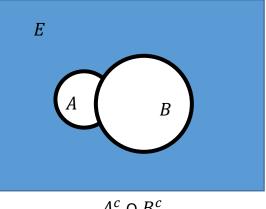






 $(A\cup B)^c$





Therefore, $(A \cup B)^c = A^c \cap B^c$.

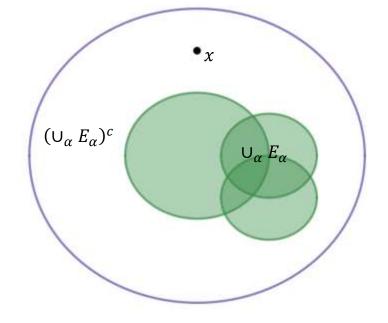
 $A^c\cap B^c$

Theorem: Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of sets E_{α} . Then

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right).$$

Proof: We will do this by first showing that $(\bigcup_{\alpha} E_{\alpha})^{c} \subseteq \bigcap_{\alpha} (E_{\alpha}^{c})$. Then we will show that $\bigcap_{\alpha} (E_{\alpha}^{c}) \subseteq (\bigcup_{\alpha} E_{\alpha})^{c}$. This implies that $(\bigcup_{\alpha} E_{\alpha})^{c} = \bigcap_{\alpha} (E_{\alpha}^{c})$.

Let's show $(\bigcup_{\alpha} E_{\alpha})^{c} \subseteq \bigcap_{\alpha} (E_{\alpha}^{c}).$ If $x \in (\bigcup_{\alpha} E_{\alpha})^{c}$ then $x \notin \bigcup_{\alpha} E_{\alpha}$ by definition of a complement.

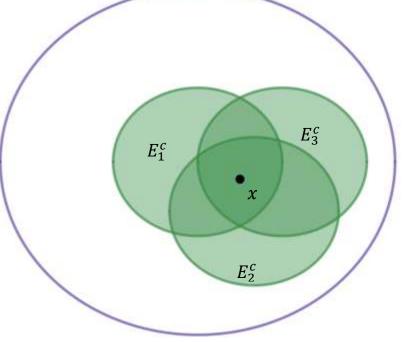


Thus $x \notin E_{\alpha}$ for any α (otherwise x would be in $\bigcup_{\alpha} E_{\alpha}$) Therefore, $x \in E_{\alpha}{}^{c}$ for all α . That means that $x \in \bigcap_{\alpha} E_{\alpha}{}^{c}$ (definition of intersection)

Hence $\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} \subseteq \bigcap_{\alpha} (E_{\alpha}^{c})$

Now let's show $\bigcap_{\alpha} (E_{\alpha}^{c}) \subseteq (\bigcup_{\alpha} E_{\alpha})^{c}$. Let $x \in \bigcap_{\alpha} (E_{\alpha}^{c})$. Then by definition of intersection, $x \in E_{\alpha}^{c}$ for every α . Thus $x \notin E_{\alpha}$ for any α .

That means that $x \notin \bigcup_{\alpha} E_{\alpha}$. That means that $x \in (\bigcup_{\alpha} E_{\alpha})^{c}$ by the definition of complement. Thus $\bigcap_{\alpha} (E_{\alpha}^{c}) \subseteq (\bigcup_{\alpha} E_{\alpha})^{c}$ Hence, $(\bigcup_{\alpha} E_{\alpha})^{c} = \bigcap_{\alpha} (E_{\alpha}^{c})$.



Theorem:

a. For any collection $\{G_{\alpha}\}$ of open sets (this could be a finite collection or infinite, even uncountably infinite collection) $\bigcup_{\alpha} G_{\alpha}$ is open.

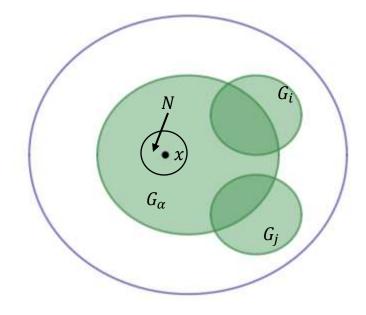
- b. For any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed.
- c. For any finite collection of open sets $\{G_i\}$, $\bigcap_{i=1}^n G_i$ is open.
- d. For any finite collection of closed sets $\{F_i\}$, $\bigcup_{i=1}^n F_i$ is closed.

Proof:

a. Let $G = \bigcup_{\alpha} G_{\alpha}$, where G_{α} is open for all α . To show G is open we need to show that for any $x \in G$ we can find a neighborhood of x that lies completely in G.

If $x \in G$, then x must lie in some open set G_{α} .

Since G_{α} is open, there exists some neighborhood N of x that lies entirely in G_{α} .



That neighborhood N also lies in $G = \bigcup_{\alpha} G_{\alpha}$.

Hence G is open.

b. To prove for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed, we note that the previous theorem stated that for a collection of sets $\{E_{\alpha}\}$,

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} (E_{\alpha}^{c}).$$

Now let $E_{\alpha} = F_{\alpha}^{c}$ and hence $E_{\alpha}^{c} = F_{\alpha}$.

Now substituting into the above equation:

$$(\bigcup_{\alpha} F_{\alpha}{}^{c})^{c} = \bigcap_{\alpha} (F_{\alpha}).$$

Since F_{α} is closed for all α , $F_{\alpha}^{\ c}$ must be open for all α .

By part "a" of this theorem, $\bigcup_{\alpha} F_{\alpha}^{c}$ is also open.

Since $\bigcup_{\alpha} F_{\alpha}^{c}$ is open, $(\bigcup_{\alpha} F_{\alpha}^{c})^{c}$ must be closed since it's the complement of an open set.

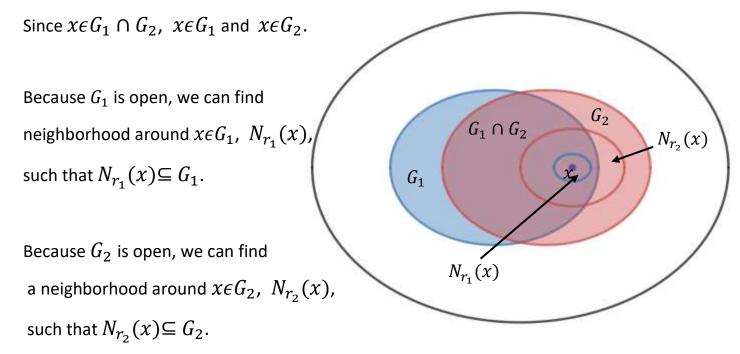
Thus, since $(\bigcup_{\alpha} F_{\alpha}{}^{c})^{c} = \bigcap_{\alpha} (F_{\alpha}), \ \bigcap_{\alpha} (F_{\alpha})$ is also closed.

c. To show that for any finite collection of open sets $\{G_i\}$, $\bigcap_{i=1}^n G_i$ is open, it helps to think about the argument for 2 open sets (it is often helpful when trying to prove most propositions involving n "things" to see how the argument works when n = 2).

Suppose G_1 and G_2 are open sets. Let's show $G_1 \cap G_2$ is open.

If $G_1 \cap G_2$ (or $\bigcap_{i=1}^n G_i$) is empty, then $G_1 \cap G_2$ (or $\bigcap_{i=1}^n G_i$) is open.

If $G_1 \cap G_2$ is not empty, then let's choose any point $x \in G_1 \cap G_2$ and show it's an interior point (and hence $G_1 \cap G_2$ is open).



Now let $r = \min(r_1, r_2)$. We now have that $N_r(x) \subseteq G_1$, and $N_r(x) \subseteq G_2$.

So $N_r(x) \subseteq G_1 \cap G_2$. This means that x is an interior point for $G_1 \cap G_2$, and hence $G_1 \cap G_2$ is open.

To prove that for any finite collection of open sets $\{G_i\}$, $\bigcap_{i=1}^n G_i$ is open, we use the same argument but now $r = \min(r_1, r_2, ..., r_n)$.

d. To show that for any finite collection of closed sets $\{F_i\}$, $\bigcup_{i=1}^n F_i$ is closed, we can use the fact that a set is closed if and only if its complement is open. So let's show that $(\bigcup_{i=1}^n F_i)^c$ is open.

From an earlier theorem we know that $(\bigcup_{i=1}^{n} F_i)^c = \bigcap_{i=1}^{n} (F_i^c)$.

Since each F_i is close, we know that each $F_i^{\ c}$ must be open.

From part c we know that the finite intersection of open sets is open, thus $\bigcap_{i=1}^{n} (F_i^{\ c})$ is open.

Since $(\bigcup_{i=1}^{n} F_i)^c = \bigcap_{i=1}^{n} (F_i^c)$, $(\bigcup_{i=1}^{n} F_i)^c$ is open.

Now we know that means that $\bigcup_{i=1}^{n} F_i$ is closed.

Ex. We need finiteness in both c and d in the previous theorem.

 $\bigcap_{i=1}^{\infty} \left(-\frac{1}{i}, \frac{1}{i}\right) = \{0\} \text{ which is not open.}$ $\bigcup_{i=1}^{\infty} \left[\frac{1}{i}, 1\right] = (0, 1] \text{ which is not closed.}$

Def. Let X, d be a metric space. If $E \subseteq X$, and if E' denotes the set of all limit points of E in X, then the **closure** of E, $\overline{E} = E \cup E'$.

Theorem: If X, d is a metric space and $E \subseteq X$, then

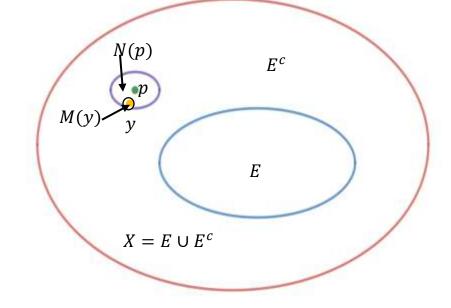
- a. \overline{E} is closed
- b. $E = \overline{E}$ if and only if *E* is closed
- c. $\overline{E} \subseteq F$ for every closed set $F \subseteq X$ such that $E \subseteq F$.

Proof:

a. To show \overline{E} is closed, we will show that $(\overline{E})^c$ is open.

Let's choose any point $p \in X$ where $p \notin \overline{E}$ (ie $p \in (\overline{E})^c$). We just need to show that p is an interior point.

Since $\overline{E} = E \cup E'$, *p* is neither in *E* nor a limit point of *E*. Hence there is a neighborhood of *p*, *N*(*p*), that doesn't intersect *E*.



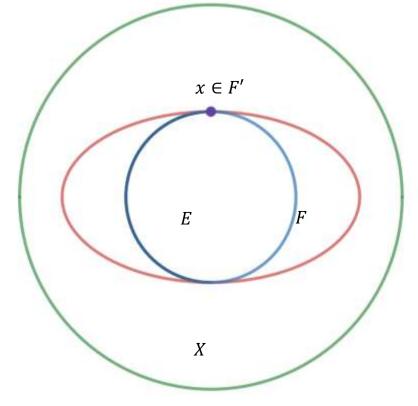
N(p) can't intersect E' either. To see this, suppose there is a $y \in E' \cap N(p)$, then there is a neighborhood around y, M(y), that lies inside of $N(p) \subseteq E^c$, since N(p) is open.

But since y is a limit point of E, M(y) must intersect E, which means that $N(p) \subseteq E^c$ intersects E, which is a contradiction ($E \cap E^c = \emptyset$, by definition).

Thus that neighborhood N(p) lies completely in $(\overline{E})^c$, hence $(\overline{E})^c$ is open and thus \overline{E} is closed.

- b. First we show if $E = \overline{E}$ then E is closed. That's follows from part a. Now we show if E is closed then $E = \overline{E}$. If E is closed then E contains all of its limit points (by definition). Hence $E = E \cup E' = \overline{E}$.
- c. To show that $\overline{E} \subseteq F$ for every closed set $F \subseteq X$ such that $E \subseteq F$, assume that F is a closed set such that $E \subseteq F \subseteq X$.

Since F is closed, it contains all of its limit points, F'.



But since $E \subseteq F$, any limit point of E is also a limit point of F. Hence F contains all limit point of E, thus $\overline{E} \subseteq F$.