Open and Closed Sets in a Metric Space- HW Problems

- 1. Prove the following (assume the standard metric on \mathbb{R} and \mathbb{R}^2):
 - a. (-2,2) is an open set in \mathbb{R} .
 - b. [-2,2] is a closed set in \mathbb{R} .
 - c. (-2,2] is neither an open set nor a closed set in \mathbb{R} .
 - d. Is $A = \{(x, y) | -2 < x < 2, y = 0\}$ open in \mathbb{R}^2 ? Prove your answer.

3. Let $A, B, C \subseteq X, d$ be non-empty open sets in a metric space X. Prove the following (without using the theorem that states that the union of open sets is open and the finite intersection of open sets is open).

- a. $A \cup B \cup C$ is open in X.
- b. $A \cap B \cap C$ is open in *X*.
- 4. Prove that If X, d is a metric space and $E \subseteq F \subseteq X$, then $\overline{E} \subseteq \overline{F}$.