Def. A set X, whose elements are called points, is said to be a **Metric Space** if for any two points p,  $q \in X$  there is a real number d(p,q), called the distance, such that:

a. 
$$d(p,q) > 0$$
 if  $p \neq q$ , and  $d(p,p) = 0$ .

b. d(p,q) = d(q,p)

c.  $d(p,q) \le d(p,r) + d(r,q)$  for any  $r \in X$  (Triangle inequality)

any function satisfying a,b,c is called a **distance function** or **metric** on X.

Ex. Let  $X = \mathbb{R}$ , d(p,q) = |p - q| (the standard distance function on  $\mathbb{R}$ ). Show X, d is a metric space.

To show X, d is a metric space, we need to show that d satisfies a,b,c above.

a. d(p,q) = |p - q| > 0 if  $p \neq q$  (property of absolute values),

$$d(p,p) = |p-p| = 0$$

b. d(p,q) = |p-q| = |q-p| = d(q,p)

c. We need to show  $d(p,q) \le d(p,r) + d(r,q)$  for any  $r \in X$ . For this distance function it means we need to show:

$$|p-q| \le |p-r| + |r-q|$$

Proof: First we will show for all real numbers that  $|x + y| \le |x| + |y|$  (This is called the triangle inequality for real numbers. We will use it a lot.)

$$|x + y|^2 = (x + y)^2 = x^2 + 2xy + y^2 = |x|^2 + 2xy + |y|^2$$

But for any real number,  $w, w \le |w|$ ; therefore:

$$|x + y|^{2} = |x|^{2} + 2xy + |y|^{2} \le |x|^{2} + 2|x||y| + |y|^{2} = (|x| + |y|)^{2}$$
  
Taking square roots we get:  $|x + y| \le |x| + |y|$ .

Now we let 
$$x = p - r$$
 and  $y = r - q$ . Notice that  $x + y = p - q$ .  
 $|p - q| \le |p - r| + |r - q|$   
Thus  $X = \mathbb{R}$ ,  $d(p,q) = |p - q|$  is a metric space.

Ex. Let 
$$X = \mathbb{R}^n$$
,  $d(p,q) = \sqrt{(p_1 - q_1)^2 + \dots + (p_n - q_n)^2} = ||p - q||$ ;  
where  $p = (p_1, \dots, p_n)$  and  $q = (q_1, \dots, q_n)$ . Show  $X, d$  is a metric space.  
 $(d(p,q) = \sqrt{(p_1 - q_1)^2 + \dots + (p_n - q_n)^2}$  is the standard metric on  $\mathbb{R}^n$ ).

We need to show that d(p,q) satisfies a,b,c in the definition of a metric space.

a.  $d(p,q) = \sqrt{(p_1 - q_1)^2 + \dots + (p_n - q_n)^2} > 0$ ; if  $p \neq q$ ; since the expression under the square root sign is strictly positive if  $p \neq q$ .

$$d(p,p) = \sqrt{(p_1 - p_1)^2 + \dots + (p_n - p_n)^2} = 0$$

b. 
$$d(p,q) = \sqrt{(p_1 - q_1)^2 + \dots + (p_n - q_n)^2}$$
  
=  $\sqrt{(q_1 - p_1)^2 + \dots + (q_n - p_n)^2} = d(q,p)$ 

c. We need to show  $d(p,q) \le d(p,r) + d(r,q)$  for any  $r \in X$ .

Proof: Once again we will start by showing  $||x + y|| \le ||x|| + ||y||$ , where  $x, y \in \mathbb{R}^n$  and ||x|| mean taking the length of the vector  $x = \langle x_1, \dots, x_n \rangle$ .

$$||x + y||^{2} = (x + y) \cdot (x + y) = x \cdot x + 2x \cdot y + y \cdot y$$
$$= ||x||^{2} + 2x \cdot y + ||y||^{2}$$

Recall that:  $x \cdot y = ||x|| ||y|| \cos\theta \le ||x|| ||y||$ ; since  $|\cos\theta| \le 1$ .

$$||x + y||^{2} = ||x||^{2} + 2x \cdot y + ||y||^{2} \le ||x||^{2} + 2||x|| ||y|| + ||y||^{2}$$
$$= (||x|| + ||y||)^{2}$$

Taking square roots we get:  $||x + y|| \le ||x|| + ||y||$ .

Now let x = p - r and y = r - q (again: x + y = p - q) and substitute:  $||p - q|| \le ||p - r|| + ||r - q||$  or  $d(p,q) \le d(p,r) + d(r,q)$  for any  $r \in X$ .

Thus  $X = \mathbb{R}^n$ ,  $d(p,q) = \sqrt{(p_1 - q_1)^2 + \dots + (p_n - q_n)^2}$ , is a metric space.

Notice that every subset  $E \subseteq X$ , d of a metric space is again a metric space with the same distance function.

Ex.  $X = \{0, \pm 1, \pm 2, \pm 3, ...\}$  is a metric space with d(p, q) = |p - q|

- Ex. Let X be a non-empty set and d given by d(p,q) = 1 if  $p \neq q$ , and 0 if p = q. Prove that X, d is a metric space.
- a. Notice d(p,q) = 1 > 0 if  $p \neq q$ , and d(p,p) = 0.
- b. d(p,q) = 1 = d(q,p) if  $p \neq q$
- c. By definition  $d(p,q) \leq 1$ . Unless p = q = r,  $d(p,r) + d(r,q) \geq 1 \geq d(p,q)$ . If p = q = r, then d(p,q) = 0 and d(p,r) + d(r,q) = 0, hence:  $d(p,q) \leq d(p,r) + d(r,q)$  for any  $r \in X$ . So X, d is a metric space.
- Ex. Show  $\mathbb{R}$ , d is a metric space where  $d(p,q) = |e^p e^q|$ .
- a.  $d(p,q) = |e^p e^q| > 0$  for  $p \neq q$  and  $d(p,p) = |e^p e^p| = 0$ .
- b.  $d(p,q) = |e^p e^q| = |e^q e^p| = d(q,p).$
- c. We need to show:  $d(p,q) \le d(p,r) + d(r,q)$  for any  $r \in \mathbb{R}$ . In this case:  $|e^p - e^q| \le |e^p - e^r| + |e^r - e^q|.$

This looks daunting, but remember the Triangle inequality for real numbers:  $|x + y| \le |x| + |y|$ . Now let  $x = e^p - e^r$  and  $y = e^r - e^q$ , so  $x + y = e^p - e^q$ . Hence:  $|e^p - e^q| \le |e^p - e^r| + |e^r - e^q|.$ 

Hence  $\mathbb{R}$ , d is a metric space.

Ex. Let  $d(p,q) = |e^p - e^q|$  be a metric on  $\mathbb{R}$ . Find the set of points  $p \in \mathbb{R}$  such that  $d(p,0) < \frac{1}{2}$ .

$$d(p,0) = |e^p - e^0| = |e^p - 1| < \frac{1}{2}.$$

This last inequality is equivalent to:

$$\begin{aligned} &-\frac{1}{2} < e^p - 1 < \frac{1}{2} & \text{Now add 1 to all quantities:} \\ & \frac{1}{2} < e^p < \frac{3}{2} \\ & \text{Now take natural logs of all quantities:} \\ & \ln\left(\frac{1}{2}\right) < p < \ln(\frac{3}{2}) \\ & . \end{aligned}$$

Thus the set of points  $p \in \mathbb{R}$  such that  $d(p, 0) < \frac{1}{2}$  is:  $\ln\left(\frac{1}{2}\right) .$ 

Ex. Show  $\mathbb{R}$ , d where  $d(p,q) = |\sin(p-q)|$ , is NOT a metric space.

a.  $d(p,q) = |\sin(p-q)| \ge 0$ , however,  $d(0,\pi) = |\sin(0-\pi)| = 0$ . So there exist a  $p \ne q$  where d(p,q) = 0, which violates d(p,q) > 0,  $p \ne q$ . so  $\mathbb{R}$ , d is not a metric space. Note: Not all metric spaces are subsets of  $\mathbb{R}^n$ .

Ex. X = C[0,1] =set of real valued, continuous functions on [0,1]. X is a metric space with either of these 2 metrics (there are an infinite number of metrics on X)

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$
  
$$d_2(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|.$$

Ex. Let  $f(x) = x^2$  and  $g(x) = x^3$ . Notice that  $f(x), g(x) \in C[0,1]$ . Using the 2 metrics just defined on C[0,1], find  $d_1(f,g)$  and  $d_2(f,g)$ .

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx = \int_0^1 |x^2 - x^3| dx.$$

Notice that when  $0 \le x \le 1$ ,  $x^2 \ge x^3$  (when 0 < x < 1 the higher the power the lower the value).

Thus when  $0 \le x \le 1$ ,  $x^2 - x^3 \ge 0$  hence  $|x^2 - x^3| = x^2 - x^3$ . So  $d_1(f,g) = \int_0^1 |x^2 - x^3| dx = \int_0^1 (x^2 - x^3) dx$  $= \frac{1}{3}x^3 - \frac{1}{4}x^4|_{x=0}^{x=1} = \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{12}.$ 

$$d_2(f,g) = \max_{x \in [0,1]} |f(x) - g(x)| = \max_{x \in [0,1]} |x^2 - x^3|$$

To find the maximum value of |h(x)|, we need to find where h(x) has its greatest positive value and its most negative value and choose the one which is greater in absolute value (e.g. if h(x) has 4 as its most positive value and -6 as its most negative value then the maximum of |h(x)| is |-6|=6.) In this case we already saw that  $x^2 - x^3 \ge 0$  so we just have to find the absolute maximum value of  $h(x) = x^2 - x^3$ . Using first year calculus, find the values of h(x) at all critical points in [0,1] and then test the values at the endpoints.

$$h'(x) = 2x - 3x^2 = x(2 - 3x) = 0$$
  
 $\Rightarrow \quad x = 0 \text{ or } x = \frac{2}{3}.$ 

h(0) = 0,  $h\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^3 = \frac{4}{9} - \frac{8}{27} = \frac{4}{27}$ ,  $h(1) = 1^2 - 1^3 = 0$ .

So the absolute maximum value of h(x) is  $\frac{4}{27}$  (absolute minimum is 0). So

$$d_2(f,g) = \max_{x \in [0,1]} |f(x) - g(x)| = \max_{x \in [0,1]} |x^2 - x^3| = \frac{4}{27}.$$

Def. Let X be a metric space with distance function d.

a. A **neighborhood of** p, where  $p \in X$ , is a set  $N_r(p)$  of all points q such that d(p,q) < r for some r > 0.



b. A point p is a **limit point** of  $E \subseteq X$  if every neighborhood of p contains a point  $q \neq p$  such that  $q \in E$ .



Ex. Let  $X = \mathbb{R}$ , and d the standard metric (i.e. d(p,q) = |p-q|). Let E = (0,1)That is  $E = \{x \in \mathbb{R} | \ 0 < x < 1\}$ . The set of limit points of E = [0,1].



Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let  $E = (0,1) \cup \{3\} \cup \{-2\}$ . The set of limit points of E = [0,1].



- c. If  $p \in E$  and p is not a limit point of E, then p is called an **isolated point** of E
- Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let  $E = (0,1) \cup \{3\} \cup \{-2\}$ .  $\{3\}, \{-2\}$  are isolated points of E.
- d. E is **closed** if every limit point of E is a point of E.
- Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let  $E = [0,1] \cup \{5\} \cup \{-3\}$ . *E* is closed in  $X = \mathbb{R}$ .

Let  $F = (0,1] \cup \{5\} \cup \{-3\}$ . *F* is not closed in  $X = \mathbb{R}$ , since x = 0 is a limit point of *F*, but is not contained in *F*.

e. A point p is an **interior point** of E if there is some neighborhood N of p, such that  $N \subseteq E$ .



Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let  $E = [0,1) \cup \{3\}$ .

0 < x < 1 are interior points of *E*. x = 0 and x = 3 are not interior points of *E*.



## f. E is **open** if every point of E is an interior point

Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let E = (0,1).

*E* is an open set in  $X = \mathbb{R}$ .

Note: Let  $X = \mathbb{R}^2$ , and d the standard metric. Let  $F = \{(x, y) | 0 < x < 1, y = 0\}$ 

Although *F* is essentially the same set as *E* in our example, *F* is NOT an open subset of  $X = \mathbb{R}^2$  because a neighborhood

in  $\mathbb{R}^2$  is a disk.



- g. The **complement of E** (denoted  $E^c$ ), is the set of all point  $p \in X$  such that  $p \notin E$ .
- Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let E = [0,1).

 $E^c=(-\infty,0)\cup [1,\infty).$ 

h. *E* is **bounded** if there is a real number *M* and a point  $q \in X$  such that d(p,q) < M for all  $p \in E$ .



Ex. Let  $X = \mathbb{R}$ , and d the standard metric. Let  $E = [0,1) \cup \{-2\}$ .

*E* is a bounded set. We can take  $0 \in X$  and d(0, p) < 3, for all  $p \in E$ .



i. *E* is **dense** in *X* if every point in *X* is a limit point of *E*, or a point of *E* (or both).

Ex.  $E = \bigcup_{i=-\infty}^{i=\infty} (i, i + 1)$ , *E* is dense in  $X = \mathbb{R}$ , and *d* the standard metric. Ex.  $E = \{rational numbers\}; E$  is dense in  $X = \mathbb{R}$ , and *d* the standard metric.

Ex. Consider the following subsets of the metric space  $X = \mathbb{R}$ , with d the standard metric.

 $A = \{0, 1, 2, 3, \dots\}, \qquad B = \{0, 1, 2\}, \qquad C = \{x \mid |x| \le 2\},$  $D = \{x \mid -1 < x \le 1\}, \qquad E = \{x \mid x \ge 0 \text{ or } x = -2\}, \qquad F = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ 

Then we have the following table:

|   | <u>Limit Points</u> | Isolated Points                                       | Bounded | <u>Closed</u> | <u>Open</u> |
|---|---------------------|-------------------------------------------------------|---------|---------------|-------------|
| А | Ø                   | {0,1,2, }                                             | Ν       | Y             | Ν           |
| В | Ø                   | {0,1,2}                                               | Y       | Y             | Ν           |
| С | [-2,2]              | Ø                                                     | Y       | Y             | Ν           |
| D | [-1,1]              | Ø                                                     | Y       | Ν             | Ν           |
| Е | [0,∞)               | {-2}                                                  | Ν       | Y             | Ν           |
| F | {0}                 | $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ | Y       | Ν             | Ν           |

Ex. Consider the following subsets of the metric space  $X = \mathbb{R}^2$  with d the standard metric.



|   | <u>Limit Points</u>           | Isolated Points | Bounded | <u>Closed</u> | <u>Open</u> |
|---|-------------------------------|-----------------|---------|---------------|-------------|
| А | $x^2 + y^2 \ge 1$             | Ø               | Ν       | Ν             | Y           |
| В | $x^2 + y^2 \ge 1$             | Ø               | Ν       | Y             | Ν           |
| С | $ x  \leq 1$ and $ y  \geq 1$ | 1 {(0,0)}       | Ν       | Ν             | Ν           |