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                                            Uniform Convergence 

 

Def.  Suppose {𝑓𝑛(𝑥)} is a sequence of functions 𝑓𝑛: 𝐼 ⊆ ℝ → ℝ, where 𝐼 is an 

interval (bounded or unbounded, open, closed, or neither) in ℝ.  We say {𝒇𝒏(𝒙)} 

converges pointwise to 𝒇(𝒙), and write lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥), if for each 𝑥 ∈ 𝐼, 

the sequence of real numbers {𝑓𝑛(𝑥)} converges to 𝑓(𝑥).   

That is, for all 𝜖 > 0 there exists an 𝑁𝑥 ∈ ℤ+ such that if 𝑛 ≥ 𝑁𝑥 then 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖.  

 

Ex.  Let 𝑓𝑛(𝑥) = 𝑥𝑛,  on 𝐼 = [0,1].  Prove that: 

        lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) = 0           𝑖𝑓   0 ≤ 𝑥 < 1 

                                                = 1           𝑖𝑓    𝑥 = 1. 

     For example, if  𝑥 =
1

2
 ,  the sequence {𝑓𝑛(

1

2
)} = {(

1

2
)

𝑛
} → 0 as 𝑛 → ∞. 

     However,  if 𝑥 = 1 , the sequence {𝑓𝑛(1)} = {(1)𝑛} → 1 as 𝑛 → ∞. 

 

𝑓1(𝑥) = 𝑥 

𝑓2(𝑥) = 𝑥2 

𝑓3(𝑥) = 𝑥3 

 
𝑓10(𝑥) = 𝑥10 

𝑓100(𝑥) = 𝑥100 

0 1 

1 
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We must show given any 𝜖 > 0 there exists an 𝑁𝑥 ∈ ℤ+, such that if 𝑛 ≥ 𝑁𝑥 

then |𝑥𝑛 − 𝑓(𝑥)| < 𝜖. 

If 𝑥 = 1,  then |1𝑛 − 1| = 0 < 𝜖 for any 𝑛, so we can choose 𝑁𝑥 = 1. 

If 𝑥 = 0,  then |0𝑛 − 0| = 0 < 𝜖 for any 𝑛, so we again can choose 𝑁𝑥 = 1. 

If 0 < 𝑥 < 1, then:    |𝑥𝑛 − 0| < 𝜖 

                      |𝑥|𝑛 < 𝜖 

              (𝑛)𝑙𝑛|𝑥| < 𝑙𝑛𝜖 

                        𝑛 >
𝑙𝑛𝜖

ln|𝑥|
        (since ln|x| < 0 because 0 < 𝑥 < 1)  

 

So choose 𝑁𝑥 > max (
𝑙𝑛𝜖

ln|𝑥|
, 0) ;   

 If 𝑛 ≥ 𝑁𝑥 then: 

|𝑥𝑛 − 0| = |𝑥|𝑛 < |𝑥|
𝑙𝑛𝜖

ln|𝑥| = (𝑒ln|𝑥|)
𝑙𝑛𝜖

ln|𝑥| = 𝑒𝑙𝑛𝜖 = 𝜖.     

 

     Notice that each 𝑓𝑛(𝑥) in this example is a continuous function (in fact, an 

infinitely differentiable function), but the sequence of functions converges 

pointwise to a discontinuous function. 

 

 

     To try to avoid having a sequence of continuous functions converging to a 

discontinuous function, we need a “stronger” definition of “convergence”. 
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Def.  A sequence of functions {𝑓𝑛(𝑥)} , 𝑓𝑛: 𝐼 ⊆ ℝ → ℝ, where 𝐼 is an interval 

(bounded or unbounded, open, closed, or neither) in ℝ, converges uniformly to 

𝒇(𝒙) if  for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ , such that for ALL 𝑥 ∈ 𝐼,  if 𝑛 ≥ 𝑁 

then |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖. 

 

1. Notice that for Pointwise convergence the 𝑁 can depend on the point     

𝑥 ∈ 𝐼 as well as 𝜖.  For Uniform convergence the 𝑁 depends only on 𝜖 and 

NOT the point 𝑥 ∈ 𝐼.  

 

2. Uniform convergence is a stronger condition than pointwise convergence.  

Thus if a sequence of functions converges uniformly to a function 𝑓(𝑥), 

then it must converge pointwise to 𝑓(𝑥).  However, if a sequence of 

functions converges pointwise to 𝑓(𝑥) then it may, or may not, converge 

uniformly to 𝑓(𝑥). 

 

 

Ex.  Show the sequence of functions {𝑥𝑛} converges pointwise to the function: 

        𝑓(𝑥) = 0   if  0 ≤ 𝑥 < 1 

                    = 1   if   𝑥 = 1   

      on 𝐼 = [0,1], but not uniformly. 

 

     In the previous example we saw that {𝑥𝑛} converges pointwise to 𝑓(𝑥).  To see 

that any 𝑁 we use must depend on the 𝑥 ∈ [0,1], notice that if 0 < 𝑥 < 1 and we 

try to solve for an 𝑛 from the epsilon statement we get: 

              |𝑥𝑛 − 0| < 𝜖  is equivalent to 𝑛 >
𝑙𝑛𝜖

ln|𝑥|
                                                       

Thus if  𝜖 < 1, as 𝑥 goes to 1,  
𝑙𝑛𝜖

ln|𝑥|
 goes to ∞, thus there is no 𝑁 that will work 

for all 0 ≤ 𝑥 ≤ 1 . 
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Another way to see this is if we choose  𝜖 =
1

2
 , given any positive integer 𝑛, we 

can always find an 𝑥, where 0 < 𝑥 < 1 and |𝑥𝑛 − 0| ≥
1

2
. 

|𝑥𝑛| ≥
1

2
   is equivalent to 𝑥 ≥ (

1

2
)

1

𝑛    (notice that 0 < (
1

2
)

1

𝑛 < 1 ).    

Thus for any positive integer 𝑛, 𝑥 = (
1

2
)

1

𝑛 , has  |𝑥𝑛 − 0| = |((
1

2
)

1

𝑛)𝑛| =
1

2
≥

1

2
 .   

 

Notice that if 𝐼 = [0,
7

8
], {𝑥𝑛} would converge uniformly to 𝑓(𝑥) = 0. 

In this case we would just note that:   
𝑙𝑛𝜖

ln|𝑥|
≤

𝑙𝑛𝜖

ln|
7

8
|
  for all 𝑥 ∈ [0,

7

8
].       

So we could choose 𝑁 > max (
𝑙𝑛𝜖

ln|
7
8

|
, 0) which does not depend on 𝑥.    

                                                

Ex.  Show that the sequence of functions 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
    converges 

uniformly to 𝑓(𝑥) = 0 for 𝐼 = ℝ.  However, show that 𝑓𝑛′(𝑥) does not 

converge even pointwise to 𝑓′(𝑥). 

 

𝑓1(𝑥) = 𝑠𝑖𝑛𝑥 

𝑓2(𝑥) =
𝑠𝑖𝑛4𝑥

2
 

𝑓4(𝑥) =
𝑠𝑖𝑛16𝑥

4
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To show that the sequence of functions 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
  converges uniformly 

to 𝑓(𝑥) = 0 for 𝐼 = ℝ, we must show: 

for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+ such that for all 𝑥 ∈ ℝ,  if 𝑛 ≥ 𝑁 then         

                              |
sin(𝑛2𝑥)

𝑛
− 0| < 𝜖.      

As usual, we start with the epsilon statement: 

|
sin(𝑛2𝑥)

𝑛
− 0| = |

sin(𝑛2𝑥)

𝑛
| ≤

1

𝑛
 ;      since | sin(𝑏) | ≤ 1, for all 𝑏 ∈ ℝ. 

So if we can force 
1

𝑛
< 𝜖 we’re almost done, because |

sin(𝑛2𝑥)

𝑛
− 0| ≤

1

𝑛
 .  

 

But   
1

𝑛
< 𝜖 is equivalent to   𝑛 >

1

𝜖
 .    

 

So choose 𝑁 >
1

𝜖
   (notice that 𝑁 depends only on 𝜖 and not 𝑥 ∈ ℝ). 

If  n ≥ 𝑁 >
1

𝜖
 we have: 

|
sin(𝑛2𝑥)

𝑛
− 0| = |

sin(𝑛2𝑥)

𝑛
| ≤

1

𝑛
<

1

1
𝜖

= 𝜖. 

 

  Thus 𝑓𝑛(𝑥) =
sin(𝑛2𝑥)

𝑛
    converges uniformly to 𝑓(𝑥) = 0 for 𝐼 = ℝ.  

 

Now notice that 𝑓𝑛
′(𝑥) =

𝑛2cos (𝑛2𝑥)

𝑛
= 𝑛𝑐𝑜𝑠(𝑛2𝑥),   and  𝑓′(𝑥) = 0.     

However, for no value of 𝑥 is lim
𝑛→∞

𝑓𝑛
′(𝑥) = 0, in fact the lim

𝑛→∞
𝑓𝑛

′(𝑥) does not exist 

(at least it’s not a finite number).  For example, when 𝑥 = 0,  

lim
𝑛→∞

𝑓𝑛
′(𝑥) = lim

𝑛→∞
𝑛 = ∞.   
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Theorem:  If 𝑓𝑛(𝑥) converges to 𝑓(𝑥) uniformly on an interval 𝐼 ⊆ ℝ, and 𝑓𝑛(𝑥) is 

continuous on 𝐼 for all 𝑛, then 𝑓(𝑥) is continuous on 𝐼. 

 

Proof: we must show that given any point 𝑎 ∈ 𝐼, that for every 𝜖 > 0 there exists 

a 𝛿 > 0 such that if |𝑥 − 𝑎| < 𝛿,  𝑥 ∈ 𝐼,  then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜖  (here the 𝛿 can 

depend on the point “a”). 

Let’s start by choosing any point 𝑎 ∈ 𝐼, and fixing any 𝜖 > 0.  

 

By the triangle inequality we know: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓(𝑎)|.   

  

Using the triangle inequality again, but on the 2nd term on the RHS we get: 

|𝑓𝑛(𝑥) − 𝑓(𝑎)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|.  

   

Putting these 2 triangle inequalities together we get: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|.  

   

Now let’s show that each one of the terms on the RHS can be made less than 
𝜖

3
 .  

 

Since 𝑓𝑛(𝑥) converges to 𝑓(𝑥) uniformly we know there exists a 𝑁 ∈ ℤ+ such 

that if 𝑛 ≥ 𝑁 then |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜖

3
 for every 𝑥 ∈ 𝐼. 

Thus the first and the third terms on the RHS can be made less than 
𝜖

3
 by choosing 

any 𝑛 ≥ 𝑁, using 𝑁 in the statement above.  
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Since 𝑓𝑛(𝑥) is continuous on 𝐼 we know that given any 
𝜖

3
> 0 there exists    a 

𝛿 > 0 such that if |𝑥 − 𝑎| < 𝛿, 𝑥 ∈ 𝐼,  then |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| <
𝜖

3
 .   

Using this 𝛿 we have: 

|𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)| + |𝑓𝑛(𝑎) − 𝑓(𝑎)|  

                                 <
𝜖

3
+ 

𝜖

3
+

𝜖

3
= 𝜖. 

 

Thus 𝑓(𝑥) is continuous on 𝐼. 

 

Def. Let 𝑪(𝑰) = {bounded continuous functions 𝑓: 𝐼 ⊆ ℝ → ℝ} 

Note:  If 𝐼 is closed and bounded then it is compact and thus any continuous 

function on 𝐼 will automatically be bounded. 

 

𝐶(𝐼) is a metric space with the distance defined as: 

  𝑑(𝑓(𝑥), 𝑔(𝑥)) = Sup
𝑥∈𝐼

|𝑓(𝑥) − 𝑔(𝑥)| 

1. 𝑑(𝑓(𝑥), 𝑔(𝑥)) = Sup
𝑥∈𝐼

|𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 ; and  𝑑(𝑓(𝑥), 𝑔(𝑥)) = 0 

implies 𝑓(𝑥) = 𝑔(𝑥). 

2. 𝑑(𝑓(𝑥), 𝑔(𝑥)) =  𝑑(𝑔(𝑥), 𝑓(𝑥)) 

3. 𝑑(𝑓(𝑥), 𝑔(𝑥)) ≤  𝑑(𝑓(𝑥), ℎ(𝑥)) +  𝑑(ℎ(𝑥), 𝑔(𝑥))   
This is true because if 𝐴(𝑥) = 𝐵(𝑥) + 𝐸(𝑥)  then by the triangle inequality: 

                                       |𝐴(𝑥)| ≤ |𝐵(𝑥)| + |𝐸(𝑥)| for any 𝑥 ∈ 𝐼. 

Thus we have:      Sup
𝑥∈𝐼

|𝐴(𝑥)| ≤ Sup
𝑥∈𝐼

|𝐵(𝑥)| + Sup
𝑥∈𝐼

|𝐸(𝑥)|. 

Now let 𝐴(𝑥) = 𝑓(𝑥) − 𝑔(𝑥),    𝐵(𝑥) = 𝑓(𝑥) − ℎ(𝑥),     𝐸(𝑥) = ℎ(𝑥) − 𝑔(𝑥). 

This gives us 𝑑(𝑓(𝑥), 𝑔(𝑥)) ≤  𝑑(𝑓(𝑥), ℎ(𝑥)) +  𝑑(ℎ(𝑥), 𝑔(𝑥)). 
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Notice that a sequence of functions 𝑓𝑛(𝑥) ∈ 𝐶(𝐼) converges to 𝑓(𝑥) with this 

metric if given any 𝜖 > 0 there exists a 𝑁 ∈ ℤ+ such that if 𝑛 ≥ 𝑁 then 

𝑑(𝑓𝑛(𝑥), 𝑓(𝑥)) = Sup
𝑥∈𝐼

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖. 

 

This 𝜖 statement is equivalent to saying that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖 for all 𝑥 ∈ 𝐼. 

Thus convergence in 𝐶(𝐼) is the same as uniform convergence.  

 

We already know that if 𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥) and all of the 𝑓𝑛(𝑥) 

are continuous then so is 𝑓(𝑥).  In a moment we’ll see that if all of the 𝑓𝑛(𝑥) are 

also bounded, then so is 𝑓(𝑥).  Thus any sequence in 𝐶(𝐼) that “converges” with 

the above metric, converges to a function in 𝐶(𝐼).  Thus 𝐶(𝐼) is a complete 

metric space. 

 

Theorem:  𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥) on 𝐼 if and only if for all 𝜖 > 0 

there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛, 𝑚 ≥ 𝑁  then                

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖 . 

 (i.e., if {𝑓𝑛(𝑥)} ⊆ 𝐶(𝐼), then {𝑓𝑛(𝑥)} converges to 𝑓(𝑥) ∈ 𝐶(𝐼), if and only if      

{𝑓𝑛(𝑥) } is a Cauchy sequence in 𝐶(𝐼)). 

 

Proof:  Assume that 𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥) on 𝐼. 

By the triangle inequality we have: 

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓(𝑥) − 𝑓𝑚(𝑥)|.  

  

Since 𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥) on 𝐼, there exists 𝑁 ∈ ℤ+ such that if 

𝑛 ≥ 𝑁 then |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜖

2
 for any 𝑥 ∈ 𝐼. 

And, of course, if 𝑚 ≥ 𝑁 then |𝑓𝑚(𝑥) − 𝑓(𝑥)| <
𝜖

2
  for any 𝑥 ∈ 𝐼.  
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Thus if 𝑚, 𝑛 ≥ 𝑁 then we have: 

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓(𝑥) − 𝑓𝑚(𝑥)| <
𝜖

2
+

𝜖

2
= 𝜖                      

for any 𝑥 ∈ 𝐼. 

 

Now assume for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  

 if 𝑛, 𝑚 ≥ 𝑁 then |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖  and show that 𝑓𝑛(𝑥) converges 

uniformly to 𝑓(𝑥) on 𝐼. 

 

For each 𝑥 ∈ 𝐼, {𝑓𝑛(𝑥)} is a Cauchy sequence of real numbers and thus 

converges to a real number 𝑓(𝑥).  So lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥) (this is a pointwise 

limit).  

 

Now we must show that 𝑓𝑛(𝑥) converges uniformly to 𝑓(𝑥).  

 

By assumption, there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛, 𝑚 ≥ 𝑁  

then |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖.   

 

This is true for all 𝑚 ≥ 𝑁, so let 𝑚 go to ∞.  Thus we have: 

there exists an 𝑁 ∈ ℤ+, such that for all 𝑥 ∈ 𝐼,  if 𝑛 ≥ 𝑁  

then |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖.   

Hence  𝑓𝑛(𝑥) converges to 𝑓(𝑥) uniformly. 
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     Now we can see why a set of bounded uniformly convergent continuous 

functions must converge to a bounded continuous function.  Suppose       

|𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝐼 and each 𝑛.  How do we know that as 𝑛 goes to 

infinity, 𝑀𝑛 doesn’t go to infinity?  

 

By the previous theorem we know that any Cauchy sequence in 𝐶(𝐼), {𝑓𝑛(𝑥)}, 

converges to uniformly to some 𝑓(𝑥) on 𝐼 (which must be continuous since all of 

the 𝑓𝑛
′𝑠 are). Thus we have for all 𝜖 > 0 there exists an 𝑁 ∈ ℤ+, such that for all 

𝑥 ∈ 𝐼,  if  𝑛 ≥ 𝑁 then |𝑓(𝑥) − 𝑓𝑛(𝑥)| < 𝜖.   

 

In particular, |𝑓(𝑥) − 𝑓𝑁(𝑥)| < 𝜖  for all 𝑥 ∈ 𝐼.  Thus we have: 

                                   −𝜖 < 𝑓(𝑥) − 𝑓𝑁(𝑥) < 𝜖 

                               𝑓𝑁(𝑥) − 𝜖 < 𝑓(𝑥) < 𝑓𝑁(𝑥) + 𝜖 

        −𝑀𝑁 − 𝜖 ≤ 𝑓𝑁(𝑥) − 𝜖 < 𝑓(𝑥) < 𝑓𝑁(𝑥) + 𝜖 ≤ 𝑀𝑁 + 𝜖 

 

Thus  |𝑓(𝑥)| ≤ 𝑀𝑁 + 𝜖 and 𝑓(𝑥) is bounded. 

Hence any Cauchy sequence in 𝐶(𝐼) must converge to a bounded continuous 

function, 𝑓(𝑥), thus 𝑓(𝑥) ∈ 𝐶(𝐼) and 𝐶(𝐼) is complete.  


