Uniform Convergence

Def. Suppose $\{f_n(x)\}$ is a sequence of functions $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where I is an interval (bounded or unbounded, open, closed, or neither) in \mathbb{R} . We say $\{f_n(x)\}$ converges pointwise to f(x), and write $\lim_{n\to\infty} f_n(x) = f(x)$, if for each $x \in I$, the sequence of real numbers $\{f_n(x)\}$ converges to f(x).

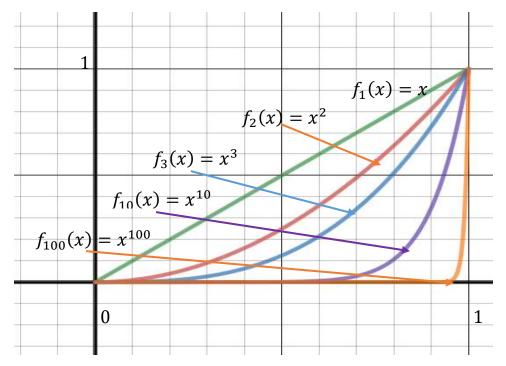
That is, for all $\epsilon > 0$ there exists an $N_x \in \mathbb{Z}^+$ such that if $n \ge N_x$ then $|f_n(x) - f(x)| < \epsilon$.

Ex. Let $f_n(x) = x^n$, on I = [0,1]. Prove that:

$$\lim_{n \to \infty} f_n(x) = f(x) = 0 \qquad if \ 0 \le x < 1$$
$$= 1 \qquad if \ x = 1.$$

For example, if $x = \frac{1}{2}$, the sequence $\{f_n(\frac{1}{2})\} = \{(\frac{1}{2})^n\} \to 0 \text{ as } n \to \infty$.

However, if x = 1, the sequence $\{f_n(1)\} = \{(1)^n\} \rightarrow 1 \text{ as } n \rightarrow \infty$.



We must show given any $\epsilon > 0$ there exists an $N_x \in \mathbb{Z}^+$, such that if $n \ge N_x$ then $|x^n - f(x)| < \epsilon$. If x = 1, then $|1^n - 1| = 0 < \epsilon$ for any n, so we can choose $N_x = 1$. If x = 0, then $|0^n - 0| = 0 < \epsilon$ for any n, so we again can choose $N_x = 1$. If 0 < x < 1, then: $|x^n - 0| < \epsilon$ $|x|^n < \epsilon$ $(n)ln|x| < ln\epsilon$ $n > \frac{ln\epsilon}{\ln|x|}$ (since $\ln|x| < 0$ because 0 < x < 1)

So choose
$$N_x > \max(\frac{\ln\epsilon}{\ln|x|}, 0)$$
;

If $n \ge N_x$ then: $|x^n - 0| = |x|^n < |x|^{\frac{\ln \epsilon}{\ln |x|}} = (e^{\ln |x|})^{\frac{\ln \epsilon}{\ln |x|}} = e^{\ln \epsilon} = \epsilon.$

Notice that each $f_n(x)$ in this example is a continuous function (in fact, an infinitely differentiable function), but the sequence of functions converges pointwise to a discontinuous function.

To try to avoid having a sequence of continuous functions converging to a discontinuous function, we need a "stronger" definition of "convergence".

Def. A sequence of functions $\{f_n(x)\}$, $f_n: I \subseteq \mathbb{R} \to \mathbb{R}$, where I is an interval (bounded or unbounded, open, closed, or neither) in \mathbb{R} , **converges uniformly to** f(x) if for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for ALL $x \in I$, if $n \ge N$ then $|f_n(x) - f(x)| < \epsilon$.

- Notice that for Pointwise convergence the N can depend on the point x ∈ I as well as ε. For Uniform convergence the N depends only on ε and NOT the point x ∈ I.
- 2. Uniform convergence is a stronger condition than pointwise convergence. Thus if a sequence of functions converges uniformly to a function f(x), then it must converge pointwise to f(x). However, if a sequence of functions converges pointwise to f(x) then it may, or may not, converge uniformly to f(x).
- Ex. Show the sequence of functions $\{x^n\}$ converges pointwise to the function:

f(x) = 0 if $0 \le x < 1$ = 1 if x = 1

on I = [0,1], but not uniformly.

In the previous example we saw that $\{x^n\}$ converges pointwise to f(x). To see that any N we use must depend on the $x \in [0,1]$, notice that if 0 < x < 1 and we try to solve for an n from the epsilon statement we get:

 $|x^n - 0| < \epsilon$ is equivalent to $n > \frac{ln\epsilon}{\ln|x|}$ Thus if $\epsilon < 1$, as x goes to 1, $\frac{ln\epsilon}{\ln|x|}$ goes to ∞ , thus there is no N that will work for all $0 \le x \le 1$. Another way to see this is if we choose $\epsilon = \frac{1}{2}$, given any positive integer n, we can always find an x, where 0 < x < 1 and $|x^n - 0| \ge \frac{1}{2}$.

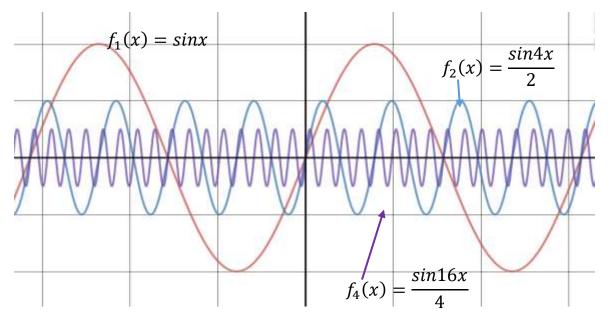
$$|x^n| \ge \frac{1}{2} \text{ is equivalent to } x \ge (\frac{1}{2})^{\frac{1}{n}} \text{ (notice that } 0 < (\frac{1}{2})^{\frac{1}{n}} < 1 \text{).}$$

Thus for any positive integer $n, x = (\frac{1}{2})^{\frac{1}{n}}$, has $|x^n - 0| = \left|((\frac{1}{2})^{\frac{1}{n}})^n\right| = \frac{1}{2} \ge \frac{1}{2}$

Notice that if $I = [0, \frac{7}{8}]$, $\{x^n\}$ would converge uniformly to f(x) = 0. In this case we would just note that: $\frac{\ln \epsilon}{\ln |x|} \le \frac{\ln \epsilon}{\ln |\frac{7}{8}|}$ for all $x \in [0, \frac{7}{8}]$.

So we could choose $N > \max(\frac{\ln \epsilon}{\ln|\frac{7}{8}|}, 0)$ which does not depend on x.

Ex. Show that the sequence of functions $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$. However, show that $f_n'(x)$ does not converge even pointwise to f'(x).



To show that the sequence of functions $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$, we must show:

for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$ such that for all $x \in \mathbb{R}$, if $n \ge N$ then

$$\left|\frac{\sin(n^2x)}{n} - 0\right| < \epsilon.$$

As usual, we start with the epsilon statement:

$$\left|\frac{\sin(n^2x)}{n} - 0\right| = \left|\frac{\sin(n^2x)}{n}\right| \le \frac{1}{n}; \quad \text{since } |\sin(b)| \le 1, \text{ for all } b \in \mathbb{R}.$$

So if we can force $\frac{1}{n} < \epsilon$ we're almost done, because $\left|\frac{\sin(n^2x)}{n} - 0\right| \le \frac{1}{n}.$

But
$$\frac{1}{n} < \epsilon$$
 is equivalent to $n > \frac{1}{\epsilon}$

So choose $N > \frac{1}{\epsilon}$ (notice that N depends only on ϵ and not $x \in \mathbb{R}$). If $n \ge N > \frac{1}{\epsilon}$ we have: $\left|\frac{\sin(n^2 x)}{n} - 0\right| = \left|\frac{\sin(n^2 x)}{n}\right| \le \frac{1}{n} < \frac{1}{\frac{1}{\epsilon}} = \epsilon.$

Thus $f_n(x) = \frac{\sin(n^2 x)}{n}$ converges uniformly to f(x) = 0 for $I = \mathbb{R}$.

Now notice that $f'_n(x) = \frac{n^2 \cos(n^2 x)}{n} = n \cos(n^2 x)$, and f'(x) = 0. However, for no value of x is $\lim_{n \to \infty} f'_n(x) = 0$, in fact the $\lim_{n \to \infty} f'_n(x)$ does not exist (at least it's not a finite number). For example, when x = 0,

 $\lim_{n\to\infty}f'_n(x)=\lim_{n\to\infty}n=\infty.$

Theorem: If $f_n(x)$ converges to f(x) uniformly on an interval $I \subseteq \mathbb{R}$, and $f_n(x)$ is continuous on I for all n, then f(x) is continuous on I.

Proof: we must show that given any point $a \in I$, that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f(x) - f(a)| < \epsilon$ (here the δ can depend on the point "a").

Let's start by choosing any point $a \in I$, and fixing any $\epsilon > 0$.

By the triangle inequality we know:

 $|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f(a)|.$

Using the triangle inequality again, but on the 2nd term on the RHS we get:

$$|f_n(x) - f(a)| \le |f_n(x) - f_n(a)| + |f_n(a) - f(a)|.$$

Putting these 2 triangle inequalities together we get:

$$|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|.$$

Now let's show that each one of the terms on the RHS can be made less than $\frac{\epsilon}{3}$.

Since $f_n(x)$ converges to f(x) uniformly we know there exists a $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ for every $x \in I$.

Thus the first and the third terms on the RHS can be made less than $\frac{\epsilon}{3}$ by choosing any $n \ge N$, using N in the statement above.

Since $f_n(x)$ is continuous on I we know that given any $\frac{\epsilon}{3} > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$, $x \in I$, then $|f_n(x) - f_n(a)| < \frac{\epsilon}{3}$.

Using this δ we have:

$$\begin{split} |f(x) - f(a)| &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

Thus f(x) is continuous on I.

Def. Let $C(I) = \{$ bounded continuous functions $f: I \subseteq \mathbb{R} \to \mathbb{R} \}$

Note: If I is closed and bounded then it is compact and thus any continuous function on I will automatically be bounded.

C(I) is a metric space with the distance defined as:

$$\begin{split} d\big(f(x),g(x)\big) &= \sup_{x\in I} |f(x) - g(x)|\\ 1. \ d\big(f(x),g(x)\big) &= \sup_{x\in I} |f(x) - g(x)| \geq 0 \text{ ; and } d\big(f(x),g(x)\big) = 0\\ \text{implies } f(x) &= g(x).\\ 2. \ d\big(f(x),g(x)\big) &= d\big(g(x),f(x)\big)\\ 3. \ d\big(f(x),g(x)\big) &\leq d\big(f(x),h(x)\big) + d\big(h(x),g(x)\big)\\ \text{This is true because if } A(x) &= B(x) + E(x) \text{ then by the triangle inequality:}\\ &|A(x)| \leq |B(x)| + |E(x)| \text{ for any } x \in I.\\ \text{Thus we have: } \sup_{x\in I} |A(x)| \leq \sup_{x\in I} |B(x)| + \sup_{x\in I} |E(x)|.\\ \text{Now let } A(x) &= f(x) - g(x), \ B(x) &= f(x) - h(x), \ E(x) &= h(x) - g(x).\\ \text{This gives us } d\big(f(x),g(x)\big) \leq d\big(f(x),h(x)\big) + d\big(h(x),g(x)\big). \end{split}$$

Notice that a sequence of functions $f_n(x) \in C(I)$ converges to f(x) with this metric if given any $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $d(f_n(x), f(x)) = \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$

This ϵ statement is equivalent to saying that $|f_n(x) - f(x)| < \epsilon$ for all $x \in I$. Thus convergence in C(I) is the same as uniform convergence.

We already know that if $f_n(x)$ converges uniformly to f(x) and all of the $f_n(x)$ are continuous then so is f(x). In a moment we'll see that if all of the $f_n(x)$ are also bounded, then so is f(x). Thus any sequence in C(I) that "converges" with the above metric, converges to a function in C(I). Thus C(I) is a complete metric space.

Theorem: $f_n(x)$ converges uniformly to f(x) on I if and only if for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n, m \ge N$ then $|f_n(x) - f_m(x)| < \epsilon$. (i.e., if $\{f_n(x)\} \subseteq C(I)$, then $\{f_n(x)\}$ converges to $f(x) \in C(I)$, if and only if $\{f_n(x)\}$ is a Cauchy sequence in C(I)).

Proof: Assume that $f_n(x)$ converges uniformly to f(x) on *I*.

By the triangle inequality we have:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)|.$$

Since $f_n(x)$ converges uniformly to f(x) on I, there exists $N \in \mathbb{Z}^+$ such that if $n \ge N$ then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ for any $x \in I$.

And, of course, if $m \ge N$ then $|f_m(x) - f(x)| < \frac{\epsilon}{2}$ for any $x \in I$.

Thus if $m, n \ge N$ then we have:

 $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ for any $x \in I$.

Now assume for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$,

if $n, m \ge N$ then $|f_n(x) - f_m(x)| < \epsilon$ and show that $f_n(x)$ converges uniformly to f(x) on I.

For each $x \in I$, $\{f_n(x)\}$ is a Cauchy sequence of real numbers and thus converges to a real number f(x). So $\lim_{n \to \infty} f_n(x) = f(x)$ (this is a pointwise limit).

Now we must show that $f_n(x)$ converges uniformly to f(x).

By assumption, there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n, m \ge N$ then $|f_n(x) - f_m(x)| < \epsilon$.

This is true for all $m \ge N$, so let m go to ∞ . Thus we have: there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \ge N$ then $|f_n(x) - f(x)| < \epsilon$. Hence $f_n(x)$ converges to f(x) uniformly. Now we can see why a set of bounded uniformly convergent continuous functions must converge to a bounded continuous function. Suppose $|f_n(x)| \le M_n$ for all $x \in I$ and each n. How do we know that as n goes to infinity, M_n doesn't go to infinity?

By the previous theorem we know that any Cauchy sequence in C(I), $\{f_n(x)\}$, converges to uniformly to some f(x) on I (which must be continuous since all of the $f'_n s$ are). Thus we have for all $\epsilon > 0$ there exists an $N \in \mathbb{Z}^+$, such that for all $x \in I$, if $n \ge N$ then $|f(x) - f_n(x)| < \epsilon$.

In particular, $|f(x) - f_N(x)| < \epsilon$ for all $x \in I$. Thus we have:

$$-\epsilon < f(x) - f_N(x) < \epsilon$$
$$f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon$$
$$-M_N - \epsilon \le f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon \le M_N + \epsilon$$

Thus $|f(x)| \le M_N + \epsilon$ and f(x) is bounded.

Hence any Cauchy sequence in C(I) must converge to a bounded continuous function, f(x), thus $f(x) \in C(I)$ and C(I) is complete.