Uniform Convergence- HW Problems

1. Let $\{f_n(x)\}$ be defined by:

$$f_n(x) = \sqrt[n]{x}$$
; for $0 \le x \le 1$.

a. Prove with an ϵ -N argument that $\{f_n(x)\}$ converges pointwise to the function: f(x) = 1 if $0 < x \le 1$

$$= 0$$
 if $x = 0$.

- b. Show that $\{f_n(x)\}$ does not converge uniformly to f(x) by showing that given any n > 0 you can find a point 0 < x < 1such that $\left|\sqrt[n]{x} - 1\right| \ge \frac{1}{2}$. (Note: the point x can be a function of n)
- c. Using the ϵ -N definition of uniform convergence, prove that $\{f_n(x)\}$ converges uniformly to: f(x) = 1, on the interval $[\frac{1}{2}, 1]$.

2. Suppose that $\{f_n(x)\}$ and $\{g_n(x)\}$ are sequences of real-valued functions on \mathbb{R} such that $\{f_n(x)\}$ converges uniformly to f(x) on \mathbb{R} and $\{g_n(x)\}$ converges uniformly to g(x) on \mathbb{R} . Prove with an ϵ -N argument that $\{f_n(x) + g_n(x)\}$ converges uniformly to f(x) + g(x) on \mathbb{R} .