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                                                      Taylor Series  

 

Starting with a function 𝑓(𝑥) which has infinitely many derivatives we can form a 

Taylor Polynomial of degree 𝑛 about a point 𝑥 = 𝑎. 

𝑇𝑛(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2  

                                                                     +
𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 . 

 

𝑇1(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)    is a linear approximation of 𝑓(𝑥). 

                                                                                           Here we have:  𝑇1(𝑎) = 𝑓(𝑎) 

                                                                                                                      𝑇1′(𝑎) = 𝑓′(𝑎)   

 

 

 

 

 

𝑇2(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 is a quadratic approximation of 

𝑓.                                                                                                                                                                   

                                                                                           Here we have:  𝑇2(𝑎) = 𝑓(𝑎) 

                                                                                                                   𝑇2′(𝑎) = 𝑓′(𝑎)   

                                                                                                                  𝑇2′′(𝑎) = 𝑓′′(𝑎)   

 

𝑦 = 𝑓(𝑥) 

a 

𝑇1(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

𝑦 = 𝑓(𝑥) 

 

𝑇2(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2   



2 
 

 

𝑇𝑛(𝑥) is an approximation of the function 𝑓(𝑥) which has: 

𝑇𝑛(𝑎) = 𝑓(𝑎) ,   𝑇𝑛′(𝑎) = 𝑓′(𝑎),   𝑇𝑛′′(𝑎) = 𝑓′′(𝑎),  …,  𝑇𝑛
(𝑛)(𝑎) = 𝑓(𝑛)(𝑎). 

The question is, how “good” an approximation is 𝑇𝑛(𝑥) of 𝑓(𝑥) when 𝑥 ≠ 𝑎? 

Can we put some kind of bound on how large the error is? 

 

Theorem (Taylor’s Formula);  If 𝑓 has 𝑛 + 1 derivatives in an interval 𝐼 that 

contains “a” , then for 𝑥𝜖𝐼 there is a number 𝑐, where 𝑐 is strictly between 𝑥 and 

𝑎, such that 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯   

                                                                                +
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥, 𝑎). 

where the error after the 𝑛th degree term,  𝑅𝑛(𝑥, 𝑎) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1. 

 

 

 

 

 

 

 

 

 

 

𝑦 = 𝑇𝑛(𝑥) 

𝑦 = 𝑓(𝑥) 

𝑎 𝑥 

𝑅𝑛(𝑥, 𝑎) 
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Note 1:  “𝑐” depends on 𝑥 and 𝑎. 

Note 2:  When 𝑛 = 0  we have:   

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑐)(𝑥 − 𝑎)     or    
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
= 𝑓′(𝑐);   

with 𝑐 between 𝑥 and 𝑎, which is just the Mean Value Theorem.  

 

Note 3:  Taylor’s formula is important because it allows us to explicitly estimate 

how big the error is. 

 

Proof:  We will create a function that satisfies the Mean Value Theorem and the 

expression 𝑅𝑛(𝑥, 𝑎) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1,  will follow from the M.V.T. 

Let’s start by fixing 𝑥 and 𝑎, i.e. 𝑥 and 𝑎 are now constants where 𝑥 ≠ 𝑎. 

We define a function 𝑔(𝑡) by: 

         𝑔(𝑡) = 𝑓(𝑥) − [𝑓(𝑡) + 𝑓′(𝑡)(𝑥 − 𝑡) +
𝑓′′(𝑡)

2!
(𝑥 − 𝑡)2 + ⋯ 

                                                           +
𝑓𝑛(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 + 𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑡)𝑛+1

(𝑥−𝑎)𝑛+1]   

Notice that: 

𝑔(𝑥) = 𝑓(𝑥) − [𝑓(𝑥) + 𝑓′(𝑥)(𝑥 − 𝑥) +
𝑓′′(𝑥)

2!
(𝑥 − 𝑥)2 + ⋯ +

                                                         
𝑓𝑛(𝑥)

𝑛!
(𝑥 − 𝑥)𝑛 + 𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑥)𝑛+1

(𝑥−𝑎)𝑛+1] = 0 

 𝑔(𝑎) = 𝑓(𝑥) − [𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ +

                                                                  
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑎)𝑛+1

(𝑥−𝑎)𝑛+1]  

               = 𝑓(𝑥) − 𝑓(𝑥) = 0. 
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𝑔(𝑡) satisfies the Mean Value Theorem on an interval containing 𝑥 𝑎𝑛𝑑 𝑎. 

So by the Mean Value Theorem, there exists a 𝑐 between 𝑎 and 𝑥 such that:    

                                   
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎
= 0 = 𝑔′(𝑐).  

   

𝑔′(𝑡) = −[𝑓′(𝑡) − 𝑓′(𝑡) + 𝑓′′(𝑡)(𝑥 − 𝑡)

+
1

2!
[(−2(𝑥 − 𝑡)𝑓′′(𝑡) + (𝑥 − 𝑡)2𝑓′′′(𝑡)] + ⋯

+
𝑓(𝑛+1)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 − (𝑛 + 1)𝑅𝑛(𝑥, 𝑎)

(𝑥 − 𝑡)𝑛

(𝑥 − 𝑎)𝑛+1
]. 

      Which simplifies to: 

𝑔′(𝑡) = −
𝑓(𝑛+1)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 + (𝑛 + 1)𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑡)𝑛

(𝑥−𝑎)𝑛+1 . 

 

Since 𝑔′(𝑐) = 0   we have: 

0 = 𝑔′(𝑐) = −
𝑓(𝑛+1)(𝑐)

𝑛!
(𝑥 − 𝑐)𝑛 + (𝑛 + 1)𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑐)𝑛

(𝑥−𝑎)𝑛+1 .  

 

Solving for 𝑅𝑛(𝑥, 𝑎) we get: 

𝑓(𝑛+1)(𝑐)

𝑛!
(𝑥 − 𝑐)𝑛 = (𝑛 + 1)𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑐)𝑛

(𝑥−𝑎)𝑛+1  

𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑐)𝑛 = 𝑅𝑛(𝑥, 𝑎)

(𝑥−𝑐)𝑛

(𝑥−𝑎)𝑛+1  

𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1 = 𝑅𝑛(𝑥, 𝑎) ;    where 𝑐 is between 𝑥 and 𝑎. 
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Ex.  Compute the Talylor polynomial 𝑇3(𝑥) around 𝑎 = 0 for 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 and 

use it to estimate 𝑠𝑖𝑛(0.1).  Find a bound for the error in this estimate. 

 

𝑇3(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3   

   𝑓(𝑥) = 𝑠𝑖𝑛𝑥                       𝑓(0) = 𝑠𝑖𝑛0 = 0 

  𝑓′(𝑥) = 𝑐𝑜𝑠𝑥                     𝑓′(0) = 𝑐𝑜𝑠0 = 1 

 𝑓′′(𝑥) = −𝑠𝑖𝑛𝑥                 𝑓′′(0) = −𝑠𝑖𝑛0 = 0 

𝑓′′′(𝑥) = −𝑐𝑜𝑠𝑥                𝑓′′′(0) = 𝑐𝑜𝑠0 = −1 

 𝑓4(𝑥) = 𝑠𝑖𝑛𝑥 

 

𝑇3(𝑥) = 𝑥 −
𝑥3

3!
 . 

 

𝑓(𝑥) ≈ 𝑇3(𝑥) = 𝑥 −
𝑥3

3!
  

𝑓(0.1) ≈ 0.1 −
(0.1)3

3!
≈ 0.099833  

 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3 + 𝑅3(𝑥, 0);   

𝑅3(𝑥, 0) =
𝑓4(𝑐)

(4)!
(𝑥)4 =

𝑠𝑖𝑛𝑐

(4)!
(𝑥)4  ;  where 𝑐 is between 0 and 𝑥. 

|𝑅3(0.1,0)| = |
𝑠𝑖𝑛𝑐

(4)!
(0.1)4| ≤

1

24
(0.1)4 ≈ 0.000004.   
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This means that : 

        0.099833 − 0.000004 < sin(0.1) < 0.099833 + 0.000004   or 

                                  0.099829 < sin(0.1) < 0.099837 . 

 

Ex.  Approximate 𝑙𝑛(1.2) so that the error is less than 0.001. 

 

Find the Taylor series with error term for 𝑓(𝑥) = 𝑙𝑛𝑥 around the point 𝑎 = 1. 

𝑓(𝑥) = 𝑙𝑛𝑥                                       𝑓(1) = 𝑙𝑛1 = 0 

𝑓′(𝑥) =
1

𝑥
                                         𝑓′(1) =

1

1
= 1 

𝑓′′(𝑥) =
−1

𝑥2                                      𝑓′′(1) =
−1

(1)2 = −1 

𝑓′′′(𝑥) =
2

𝑥3                                   𝑓′′′(1) =
2

(1)3 = 2 

𝑓(𝑛)(𝑥) = (−1)𝑛+1 (𝑛−1)!

𝑥𝑛            𝑓(𝑛)(1) = (−1)𝑛+1 (𝑛−1)!

1𝑛 = (−1)𝑛+1(𝑛 − 1)!               

    

 𝑇𝑛(𝑥) = 𝑓(1) + 𝑓′(1)(𝑥 − 1) +
𝑓′′(1)

2!
(𝑥 − 1)2 +

𝑓′′′(1)

3!
(𝑥 − 1)3 +

                    … +
𝑓𝑛(1)

𝑛!
(𝑥 − 1)𝑛 . 

𝑅𝑛(𝑥, 1) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 1)𝑛+1 = (−1)𝑛+2 (𝑛!)

𝑐𝑛+1 (
1

(𝑛+1)!
) (𝑥 − 1)𝑛+1    

                 = (−1)𝑛+2 (𝑥−1)𝑛+1

(𝑛+1)𝑐𝑛+1 .  
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|𝑅𝑛(𝑥, 1)| = |
(𝑥−1)𝑛+1

(𝑛+1)𝑐𝑛+1 |   where 𝑐 is between 1 and 𝑥. 

Now 𝑥 = 1.2 so: 

|𝑅𝑛(1.2,1)| = |
(1.2−1)𝑛+1

(𝑛+1)𝑐𝑛+1| =
(0.2)𝑛+1

(𝑛+1)𝑐𝑛+1 .   

Since c is between 1 and 1.2: 

|𝑅𝑛(1.2,1)| <
(0.2)𝑛+1

(𝑛+1)
   and we want this to be less than 0.001. 

So we must solve for 𝑛:     
(0.2)𝑛+1

(𝑛+1)
< 0.001.     

 

There’s no elementary way to do this, but we can just use trial and error.  Just try 

𝑛 = 1, 2, 3, … until we find an 𝑛 that works.  𝑛 = 3 will do the trick.  

 

Thus we can say: 

ln (1.2) ≈ 𝑓(1) + 𝑓′(1)(1.2 − 1) +
𝑓′′(1)

2!
(1.2 − 1)2 +

𝑓′′′(1)

3!
(1.2 − 1)3  

with an  error less than 0.001.  

 

ln(1.2) ≈ 0 + (1.2 − 1) −
1

2
(1 − 1.2)2 +

2

6
(1 − 1.2)3 ≈ 0.1827  

with an error less than 0.001.    

So we know that : 

                           0.1827 − 0.001 < ln(1.2) < 0.1827 + 0.001  

                                     0.1817 < ln(1.2) < 0.1837 . 
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Ex.  Find the negative values for 𝑥 where 𝑓(𝑥) = 𝑒𝑥  can be approximated by 

1 + 𝑥 +
𝑥2

2
+

𝑥3

6
 with an error less than 0.001. 

 

𝑇3(𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
   around 𝑎 = 0.  

 

𝑅3(𝑥, 0) =
𝑓(4)(𝑐)

(4)!
(𝑥)4 =

𝑒𝑐

24
𝑥4 we want to know the 𝑥’s such that 𝑥 < 0 

and |𝑅3(𝑥, 0)| < 0.001. 

 

Since 𝑥 < 0 and 𝑎 = 0, 𝑐, which is between 𝑥 and 𝑎, is also less than 0.  Thus 

𝑒𝑐 < 1.   

|𝑅3(𝑥, 0)| = |
𝑒𝑐

24
𝑥4| < |

𝑥4

24
| < 0.001 ;   Now let’s solve 𝑥4 < 0.024  

|𝑥| < √0.024
4

≈ 0.3936  

So  −0.3936 < 𝑥 < 0. 

 

Suppose 𝑓(𝑥) has infinitely many derivatives for 𝑥𝜖ℝ.  When is                        

𝑓(𝑥) = ∑
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛∞

𝑛=0   ?  That is, when does the Taylor Series of a 

function converge to the values of the function? 
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Theorem:  If lim
𝑛→∞

𝑅𝑛(𝑥, 𝑎) = 0 for |𝑥 − 𝑎| < 𝑀,  then                              

                   𝑓(𝑥) = ∑
𝑓𝑛

(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛∞

𝑛=0   for all 𝑥 such that  |𝑥 − 𝑎| < 𝑀. 

 

Proof:   𝑓(𝑥) = 𝑇𝑛(𝑥) + 𝑅𝑛(𝑥, 𝑎)  

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯   

                                                                                +
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥, 𝑎).  

 

     lim
𝑛→∞

𝑓(𝑥) = lim
𝑛→∞

[∑
𝑓𝑖(𝑎)

𝑖!
(𝑥 − 𝑎)𝑖𝑛

𝑖=0 +  𝑅𝑛(𝑥, 𝑎)]  

               𝑓(𝑥) = ∑
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛∞

𝑛=0   ;    since lim
𝑛→∞

𝑅𝑛(𝑥, 𝑎) = 0. 

 

Ex.  Prove that the Taylor Series around 𝑎 = 0 for 𝑓(𝑥) = 𝑒𝑥 converges to         

𝑓(𝑥) = 𝑒𝑥 for all 𝑥𝜖ℝ. 

 

    𝑓(𝑥) = 𝑒𝑥                𝑓(0) = 𝑒0 = 1  

   𝑓′(𝑥) = 𝑒𝑥               𝑓′(0) = 1  

  𝑓′′(𝑥) = 𝑒𝑥             𝑓′′(0) = 1   

𝑓(𝑛)(𝑥) = 𝑒𝑥          𝑓(𝑛)(0) = 1  
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𝑇𝑛(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
  

|𝑅𝑛(𝑥, 0)| = |
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥)𝑛+1| = |

𝑒𝑐

(𝑛+1)!
(𝑥)𝑛+1| ;                                                          

where 𝑐 is between 0 and 𝑥.  

 

We need to show that lim
𝑛→∞

|
𝑒𝑐

(𝑛+1)!
(𝑥)𝑛+1| = 0 for any 𝑥𝜖ℝ. 

Thus we just have to show for any fixed number 𝑥,  lim
𝑛→∞

|(𝑥)|𝑛+1

(𝑛+1)!
= 0,   since 𝑒𝑐 

is just a constant once 𝑥 is fixed.  

 

Fix 𝑥 and let 𝑝 = [|𝑥|] =the greatest integer less than or equal to |𝑥|. 

Notice that:  

    
|𝑥|𝑛

𝑛!
= (

|𝑥|

1
) (

|𝑥|

2
) … (

|𝑥|

𝑝
) (

|𝑥|

𝑝+1
) … (

|𝑥|

𝑛
) ≤ (

|𝑥|𝑝

𝑝!
) (

|𝑥|

(𝑝+1)
)𝑛−𝑝;   where 

|𝑥|

(𝑝+1)
< 1.  

                

We now just need to show that lim
𝑛→∞

(
|𝑥|

(𝑝+1)
)𝑛−𝑝 = 0 since  

                  0 ≤
|𝑥|𝑛

𝑛!
≤ (

|𝑥|𝑝

𝑝!
) (

|𝑥|

(𝑝+1)
)𝑛−𝑝.  

Thus by the squeeze theorem if   lim
𝑛→∞

(
|𝑥|𝑝

𝑝!
) (

|𝑥|

(𝑝+1)
)𝑛−𝑝 = 0  then  

lim
𝑛→∞

|(𝑥)|𝑛

(𝑛)!
= 0.    

 

Since   
|𝑥|

(𝑝+1)
< 1, and 

|𝑥|𝑝

𝑝!
 is a constant, if we can just show that lim

𝑛→∞
𝛼𝑛 = 0  if 

|𝛼| < 1, we will be done.  
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We must show given any 𝜖 > 0 we can find 𝑁 > 0 such that if 𝑛 ≥ 𝑁 then    

|𝛼𝑛 − 0| < 𝜖. 

 

         |𝛼|𝑛 < 𝜖  

𝑛(ln |𝛼|) < ln(𝜖)  

               𝑛 >
ln(𝜖)

ln|𝛼|
          since ln |𝛼| < 0.     

If 𝜖 > 1 then  
ln(𝜖)

ln|𝛼|
< 0  so let’s choose  𝑁 > 𝑚𝑎𝑥(0,

ln(𝜖)

ln|𝛼|
 ).  

 

Now let’s show this 𝑁 works. 

If 𝑛 ≥ 𝑁 > max(0,
ln(𝜖)

ln|𝛼|
) then 

|𝛼𝑛 − 0| = |𝛼|𝑛 < |𝛼|
ln(𝜖)
ln|𝛼| = (𝑒ln|𝛼|)

ln(𝜖)
ln|𝛼|  

                                                        = 𝑒ln|𝜖| = 𝜖.      

So lim
𝑛→∞

(|𝑥|)𝑛+1

(𝑛+1)!
= 0  and  lim

𝑛→∞
𝑅𝑛(𝑥, 0) = 0.  

So  𝑓(𝑥) = 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0  .    
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Ex.   Prove that the Taylor Series for 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 around 𝑎 = 0 converges to 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 for all 𝑥𝜖ℝ.  

 

                     𝑓(𝑥) = 𝑠𝑖𝑛𝑥                   𝑓(0) = 𝑠𝑖𝑛0 = 0  

                    𝑓′(𝑥) = 𝑐𝑜𝑠𝑥                 𝑓′(0) = 𝑐𝑜𝑠0 = 1  

                   𝑓′′(𝑥) = −𝑠𝑖𝑛𝑥             𝑓′′(0) = −𝑠𝑖𝑛0 = 0  

                 𝑓(3)(𝑥) = −𝑐𝑜𝑠𝑥          𝑓(3)(0) = −𝑐𝑜𝑠0 = −1  

                 𝑓(4)(𝑥) = 𝑠𝑖𝑛𝑥              𝑓(4)(0) = 𝑠𝑖𝑛0 = 0.    

𝑇2𝑛+1(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
… +

(−1)𝑛𝑥
2𝑛+1

(2𝑛+1)!
      

𝑅2𝑛+1(𝑥, 0) =
𝑓

(2𝑛+2)
(𝑐)

(2𝑛+2)!
(𝑥)2𝑛+2 .     

 

We must show that  lim
𝑛→∞

𝑅2𝑛+1(𝑥, 0) = 0,   for all 𝑥𝜖ℝ. 

|𝑅2𝑛+1(𝑥, 0)| = |
𝑓

(2𝑛+2)
(𝑐)

(2𝑛+2)!
(𝑥)2𝑛+2|.   

 

Notice that all of the derivatives of 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 are ±𝑠𝑖𝑛𝑥 or  ±𝑐𝑜𝑠𝑥.  In any 

of those cases we know that |𝑓(𝑛)(𝑥)| ≤ 1, for all 𝑥.  Thus we know: 

|𝑅2𝑛+1(𝑥, 0)| = |
𝑓

(2𝑛+2)
(𝑐)

(2𝑛+2)!
(𝑥)2𝑛+2| ≤ |

𝑥2𝑛+2

(2𝑛+2)!
| .     But notice that:   

0 ≤ |𝑅2𝑛+1(𝑥, 0)| ≤ |
𝑥2𝑛+2

(2𝑛+2)!
|   and we just saw that lim

𝑛→∞

|(𝑥)|𝑛

(𝑛)!
= 0.  

So by the squeeze theorem lim
𝑛→∞

𝑅2𝑛+1(𝑥, 0) = 0,  for all 𝑥𝜖ℝ.                           

Thus the Taylor Series for 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 converges to 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 for all 𝑥𝜖ℝ. 
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Ex.  Let 𝑓(𝑥) = ln (1 − 𝑥). 

a.   Find 𝑇3(𝑥) around a=0. 

b.   Approximate 𝑙𝑛(1.2) using 𝑇3(𝑥) around 𝑎 = 0. 

c.   Find an upper bound for the error in the approximation in part b. 

d.   Prove the Taylor series for  ln (1 − 𝑥),  − ∑
𝑥𝑛

𝑛
∞
𝑛=1  ,  converges to           

ln (1 − 𝑥) for −1 < 𝑥 < 0. 

 

a.   𝑇3(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3   (around 𝑎 = 0) 

  𝑓(𝑥) = ln(1 − 𝑥)                     𝑓(0) = 𝑙𝑛1 = 0 

 𝑓′(𝑥) = −
1

1−𝑥
                            𝑓′(0) = −1 

𝑓′′(𝑥) = −
1

(1−𝑥)2                       𝑓′′(0) = −1 

𝑓′′′(𝑥) = −
2

(1−𝑥)3                      𝑓′′′(0) = −2 

So we have: 

𝑇3(𝑥) = 0 − 𝑥 −
𝑥2

2
−

𝑥3

3
= −𝑥 −

𝑥2

2
−

𝑥3

3
 . 

 

b.   ln (1 − 𝑥) ≈  −𝑥 −
𝑥2

2
−

𝑥3

3
;     so at 𝑥 = −0.2 we have: 

              ln(1.2) ≈  −(−0.2) −
(−0.2)2

2
−

(−0.2)3

3
≈ 0.1827. 
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c.   The remainder, or error term, for 𝑇𝑛(𝑥) around 𝑎 = 0 is: 

𝑅𝑛(𝑥, 0) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥)𝑛+1 .   In this case, 𝑛 = 3. 

𝑅3(𝑥, 0) =
𝑓(4)(𝑐)

(4)!
(𝑥)4;      where 𝑐 is between 𝑥 and 0.  

 

Thus the error at 𝑥 = −0.2 is: 

𝑅3(−0.2,0) =
𝑓(4)(𝑐)

(4)!
(−0.2)4;       where  −0.2 < 𝑐 < 0.  

 

𝑓(4)(𝑥) = −
6

(1−𝑥)4 ;    so    𝑓(4)(𝑐) = −
6

(1−𝑐)4       

𝑅3(−0.2,0) =
1

(4)!
(−

6

(1−𝑐)4 )(−0.2)4;       where  −0.2 < 𝑐 < 0 

|𝑅3(−0.2,0)| = |
1

(4)!
(− 

6

(1−𝑐)4)(−0.2)4| =
(0.2)4

4(1−𝑐)4 ;      −0.2 < 𝑐 < 0. 

 

Since 𝑐 < 0,  1 − 𝑐 > 1;   so we can say:        

|𝑅3(−0.2,0)| =
(0.2)4

4(1−𝑐)4 <
(0.2)4

4
= 0.0004.     
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d.   To prove the Taylor series converges to the function for all −1 < 𝑥 < 0 we 

must show that  lim
𝑛→∞

𝑅𝑛(𝑥, 0) = 0  for all −1 < 𝑥 < 0. 

𝑅𝑛(𝑥, 0) =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥)𝑛+1 ;    where 𝑐 is between 𝑥 and 0. 

𝑓(𝑛+1)(𝑥) = −
𝑛!

(1−𝑥)
𝑛+1 ;    therefore:     𝑓(𝑛+1)(𝑐) = −

𝑛!

(1−𝑐)𝑛+1 .      

 

Thus we have: 

𝑅𝑛(𝑥, 0) =
−1

(𝑛+1)!
(

𝑛!

(1−𝑐)𝑛+1)(𝑥)𝑛+1 =
−1

(𝑛+1)
(

1

(1−𝑐)𝑛+1)(𝑥)𝑛+1.    

  

Notice that we can rewrite this as: 

𝑅𝑛(𝑥, 0) =
−1

(𝑛+1)
(

𝑥

1−𝑐
)

𝑛+1
;            

0 ≤ |𝑅𝑛(𝑥, 0)| =
1

(𝑛+1)
|(

𝑥

1−𝑐
)|

𝑛+1
 .     

 

Since  −1 < 𝑥 < 0 and 1 − 𝑐 > 1;  we have |
𝑥

1−𝑐
| < 1. 

If we let  𝛼 = |
𝑥

1−𝑐
| < 1,   we know that lim

𝑛→∞
𝛼𝑛 = 0. 

 

Thus by the squeeze theorem we can conclude that lim
𝑛→∞

|𝑅𝑛(𝑥, 0)| = 0  and 

thus  lim
𝑛→∞

𝑅𝑛(𝑥, 0) = 0 for all  −1 < 𝑥 < 0. 
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Ex.  Let 𝑓(𝑥) = 𝑒
−(

1

𝑥2)
                for 𝑥 > 0 

                       = 0                        for 𝑥 ≤ 0 

Show that the Taylor Series for 𝑓(𝑥) around 𝑎 = 0 does not converge to 𝑓(𝑥) 

for 𝑥 > 0. 

 

As we noted in the last example in the section on Differentiation,  for this function 

𝑓(0) = 𝑓′(0) = ⋯ = 𝑓𝑛(0) = 0.  Thus the Taylor series around 𝑎 = 0 is: 

             𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
1

2!
𝑓′′(0)𝑥2 +   

1

𝑛!
𝑓𝑛(0)𝑥𝑛 + ⋯ 

                     = 0. 

Clearly,         𝑓(𝑥) = 𝑒
−(

1

𝑥2)
                for 𝑥 > 0 

                              = 0                        for 𝑥 ≤ 0 

Is not equal to 0 for 𝑥 > 0.  So the Taylor series does not converge to the 

function for 𝑥 > 0 even though the function has an infinite number of 

derivatives.   

 


