Taylor Series

Starting with a function f(x) which has infinitely many derivatives we can form a
Taylor Polynomial of degree n about a point x = a.

T,() = f(@) + f' @& - ) + 2 (x - ay?
f’,,(a)

(@)
3! (x —a)".
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+

(x—a)®+-+

T,(x) = f(a)+ f'(a)(x — a) isalinear approximation of f(x).

Here we have: Ty (a) = f(a)

2l Ty'(@) = f'(a)

T W= f@+f@E-a)

T,(x) =f(a) + f'(a)(x —a) + L 2(|a) (x — a)? isa quadratic approximation of f.
Here we have: T,(a) = f(a)

T,'(a) = f'(a)
= fe)/ T,"(a) = " (a)

L= f@+f @@ -a) +52 - a)?




T,,(x) is an approximation of the function f(x) which has:

To(@) = f(@), T,)@ =f(a), T,"@ =f"@), .., ,"(@ =f™(@.
The question is, how “good” an approximation is Ty, (x) of f (x) whenx # a?

Can we put somekind of bound on how large the erroris?

Theorem (Taylor’s Formula); If f hasn + 1 derivatives in an interval I that

owu_n

contains “a@” , then for xel there is a number ¢, where c is strictly between x and
a, such that

f@)=f@+f @x-a)+ 52 (- a)? + LD (x —a)d + -

"(a)
+fn!a (x—a)"+ R,(x,a).

M (x — a)n+1

where the error after the nth degree term, R, (x,a) = (n+1)!

1y =f0)
,Rn(x' (1) /-

=T,

Note 1: “c” depends on x and a.



Note 2: Whenn = 0 we have:

fx)=fla)+ f'(c)x—a) or
fx)-f(a)

X—a
Theorem.

= f'(c); with ¢ between x and a, which is just the Mean Value

Note 3: Taylor’s formulais important becauseit allow us to explicity estimate
how big the erroris.

Proof: We will create a function that satisfies the Mean Value Theorem and the
()
(n+1)!

expression R, (x,a) = (x — a)™ 1, will follow fromthe M.V.T.

Let’s start by fixing x and a, i.e. x and a are now constants where x # a.

We define a function g(t) by:

g =fF)-[fFO+F OC—-1t)+ f';f” (x = £) + -
+ % x—t)" +R,(x,a) —((;C:g:;z]
Notice that:
9 = FG) = [fG) + £/ )G =) + 22 (x = )% 4 o 4
fr;(!x) (x — )™ + Ry (x, a)%))zz] =0
gla) = f(x) = [fla) + f'(a)(x — a) +f”2(!a) (x—a) + -+
fr;(!a) (x —a)™ + Ry (x, a)%izi]

=fx)—fx)=0.



g(t) satisfies the Mean Value Theorem on an interval containing x and a.

So by the Mean Value Theorem, there exists a ¢ between a and x such that:

gx)—g(a) =0 = g’(C)

g =-[f'"O-FfO+f"®)x—-1t)

1
+ 07| (26— Of ") + (e = * (O] + -

(n+1) _A\n
SO o DR )
n! (x — a)nt?

Which simplifies to:

f(n+1)(t)

n!

g' () = — (x— )" + (n + DR, (x, @) (("‘”"

x_a)n+1 *

Sinceg'(c) = 0 wehave:

f(‘n+1) (c)

n!

(x — )" + (n+ DR, (x, @) ((H)

x—a)t1’

0=g'(c)=~-

Solving for R,, (x, a) we get:

£+ (o) _ (x—c)"
o (x—c)"=n+ 1)Rn(x, a)m
£+ () n (x-c)"
(n+1)! (=)™ = Ry (x,a) (x—a)nt1
f(n+1)(C)

_ \n+1 — _ ,
(n+1)! (x —a) R, (x,a); wherecis between x and a.



Ex. Compute the Talylor polynomial T3 (x) around a = 0 for f(x) = sinx and

use it to estimate sin(0.1). Find a bound for the error in this estimate.

T30 = £0) + £/ (00 + 2 ()2 + 79 (13

f(x) = sinx f(O) = sin0 =0
f'(x) = cosx f'(0) =cos0 =1
f"(x) = —sinx f"(0)=—-sin0=0
f"(x) = —cosx £""(0) = cos0 = —1

fr(x) = sinx

3
T3(x)=x—9;—!.

) =T =x -5

(0. 1)

f(0.1) = 0.1 — ~ 0.099833

FG) = sinx = £(0) + /(0@ + =202 + O (1) + Ry (x, 0);

. 4(c) __sinc 4 . .
R;(x,0) = —(4)! (x)* = o —(x)* ; where c is between 0 and x.

|R5(0.1,0)] = |% (0.1)* < —(0.1)* ~ 0.000004



This means that :
0.099833 — 0.000004 < sin(0.1) < 0.099833 + 0.000004 or
0.099829 < sin(0.1) < 0.099837.

Ex. Approximate [n(1.2) sothat the erroris less than 0.001.

Find the Taylor series with error term for f (x) = Inx around the pointa = 1.

f(x) = Inx f(1)=In1=0
JHOES: f=1=1
" _ -1 17 _
') =— f'@) = (1)2——1
n 2 1244
f"(x) = ) (1) = E =
f(”)(x) — (_1)n+1 % f(")(l) = (-t (” 1)' = (=1)™1(n —1)!

T = fFW+ D -D+ 1P - 12+ L0 —1y7 4
ot M (x—1D)".

n!

(n+1) 1
Ra(x,1) = L0 (e — DM = (—1)m2 0

(n+1)! cnti1

( 1 )(x _ q)n+t

(n+1)!

= (—1)n+2 (e-)™

(n+1)cnt1’



(nt1)entl | where cis between 1 and x.

|Rn(x; 1)' = |

Now x = 1.2 so:

(12-)™1  (0.2)"?
(n+Dc™ 1 (n+)entrs

IR, (1.2,1)| =

Since c is between 1 and 1.2:

|IR,(1.2,1)] < D) and we want this to be less than 0.001.
n+1
So we must solve for n: ©.2) < 0.001.
(n+1)

There’s no elementary way to do this, but we can just use trial and error. Justtry
n=1,2,3,...until we find an n that works. n = 3 will do the trick.

Thus we can say:

In(12) = fF(+ ' (W2-D+E2a2- 12+ 50 a2-1)?

with an error less than 0.001.

In(1.2) ~ 0+ (1.2 1) = (1 - 1.2)? + = (1 - 1.2)* ~ 0.1827

with an error less than 0.001.
So we know that :
0.1827 — 0.001 < In(1.2) < 0.1827 + 0.001
0.1817 < In(1.2) < 0.1837.



Ex. Find the negative values for x where f(x) = e”* can be approximated by
2 3

1+x+ x? + %with an error less than 0.001.

3

2
Ts(x) = 1+x+x?+% around a = 0.

C
R3 (X, 0) = @ )(|C) (x )4 e—x we want to know the x’s such that x < 0

and |R3(x,0)| < 0.001.

Since x < 0 and a = 0, ¢, which is between x and a, is also less than 0. Thus
et < 1.

|R5(x, O)|— — |< |—|<0001 Now let’s solve x* < 0.024

|x| < 3/0.024 =~ 0.3936
So —0.3936 < x < 0.

Suppose f (x) has infinitely many derivatives for xélR. When is

flx) =X fn(a) (x — a)™ ? Thatis, when does the Taylor Series of a

function converge to the values of the function?



Theorem: If lim R, (x,a) = O for|x — a| < M, then

n—->0o

f) =%, f (a) (x — a)™ forall x suchthat |x — a| < M.

Proof: f(x) =T,(x)+ R,(x,a)

IO —a)?+ @ (- a)*+

_|_

"(a)
fn!a (x —a)*+ R, (x,a).

hm f(x) = hm[ i f @ (x—a)'+ R,(x,a)]

il
flx) = —(x a)™; sincelim R,(x,a) = 0.
n—>0o

n!

Ex. Provethat the Taylor Series around a = 0 for f(x) = e* converges to
f(x) = e* forall xeR.

f@) = e £(0) = e® =
f@=e  fO)=1
fr@=er  f10) =1

fO@=e*  fM0)=1
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3 n

x2 X X
) =1+x+7+++—

_ (L@ g

where c is between 0 and x.

( )n+1|;

(n +1)'

We need to show that lim | (x)n+1| = 0 for any xeR.

n—oo (n

|(0) |1 . c
Thus we just have to show for any fixed number x, lim = 0, sincee

n-oo (n+1)!

is justa constantonce x is fixed.

Fix x and let p = [|x|] =the greatestinteger less than or equal to |x|.

Notice that:
L2 (m) (m) (m) (ﬁ) (m) < (lxlp)( - — )P, where—* < 1.
n! 1 2 D p+1 n (p+1) (p+1)
We now just need to show that llm( )n P = 0since
n—oo (p+ 1)
0< |x|™ < (lep)( || P,
n! p! (p+1)
s ﬂ Xl \n—p _
Thus by the squeeze theorem if lim (—) = 0 then
n—oo (p+1)
n
lim @I1° _ 0.
n—-oco (n)!
p
Since < 1, and Ll is a constant, if we can justshow that lim a™ = 0 if
p+1) p! n—oo

|a| < 1, we will be done.



We must show givenany € > 0 we canfind N > 0 such thatif n = N then
la™ — 0] < e.

la|" < €
n(n|al) < In(e)

1
n > In(€) sinceln |a| < 0.
In|a|

In(e)

In|a]

< 0 solet’s choose N > max(0, inl(e)l)

Ife > 1 then

Now let’s show this N works.

IfnZN>max(O1 E |) then

In(€) In(e)
— 0] = |a|* < || = (eln|0-’|)ln|a|
= elnlel = ¢,
(Jx7+?
So lim =0 and limR,(x,0) = 0.
n—-co (n+1)! n—-oo

le

So f(x) =e* = N0

11
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Ex. Provethatthe Taylor Series for f(x) = sinx around a = 0 converges to
f(x) = sinx forall xeR.

f(x) = sinx f(0) =sin0 =0
f'(x) = cosx f'(0) =cos0 =1
f"(x) = —sinx f"(0)=—sin0 =0

f®(x) = —cosx f®(0) = —cos0 = —1

f®(x) = sinx F®(0) = sin0 = 0.
_ x3 XS (_1)nx2n+1
T2n+1(x) =X — 31 + oy + —(2n+1)!
Rons1(x,0) = oni! (x) :

We must show that lim R,,,+1(x,0) = 0, for all xeR.
n—-oo

f(2n+2)(c)

(2n+2)! (.X') e '

| R2n+1 (X, 0) | =

Notice that all of the derivatives off(x) = sinx are £sinx or +cosx. Inany

of those cases we know that |f (n) (x)l < 1, forall x. Thus we know:

(2n+2) 2n+2
f © (. \2n+2 X .
|Rop+1(x,0)| = | ani D) (x) | < | ot D] | . Butnotice that:
0 < |Ryps1(x,0)] < |(2n+2)!| and we just saw that 711—{?0 ol =

So by the squeeze theorem lim R,,,4+1(x,0) = 0, for all xeR.
n—->0oo

Thus the Taylor Series for f(x) = sinx converges to f(x) = sinx for all xeR.
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Ex. Let f(x) = In(1 — x).
a. Find T3(x) around a=0.

b. Approximate [n(1.2) using T3(x) around a = 0.

c. Find an upper bound for the errorin the approximation in part b.

d. Provethe Taylorseriesfor In(1 —x), — flozl%, converges to
In(1—x)for—1<x<0.
a. T3(x) = f(0)+f'(0)(x) + O (0)( )2 + (0) (x)3 (arounda = 0)
f(x) =In(1 —x) f(0)=In1=0

' __ 1 ' — _
Frie) = - F1(0) =
f (X)——(1 wy £(0) =-1
f70) = - (1x)3 f0) =~
So we have:

xz x3 xz x3
T3(X)— O—X—?—?——X—?—?
x2 x3

b. In(1—x) = —x — 5 T soatx = —0.2 we have:

In(1.2) ~ —(=0.2) =& 02) (_03'2)3z0.1827.
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c. The remainder, or error term, for Tn(x) arounda = 0 is:

_ F* () n+1 . _
R,(x,0) = D] (x) . Inthiscase, n = 3.

4)
R3(x,0) = f(4—)(|c) (x)*;  where c is between x and O.

Thus the errorat x = —0.2 is:
4)
Rs(-02,0) =T02(-02)%  where —02 < ¢ <0,
@(y)— 6 . @()= __°
_ 1. 6 _ 4, _
R3(-0.2,0) = - ( o )(—0.2)%  where —0.2 < ¢ < 0
1.6 o4y 02)* B
|R3(—0.2,0)| = |(4)!( (1_6)4)( 0.2)* = ey 02<c<0.

Sincec< 0, 1—c>1; sowecansay:

02)* .24
4(1—c)* 4

IR;(=0.2,0)| = = 0.0004.



d. To provethe Taylor series converges to the function forall =1 < x < 0 we
must show that lim R,,(x,0) = 0 forall -1 < x < 0.

n—>oo
V(o) n+1 .
Rn(x, 0) = W( x) ; where C is between x and 0.
n! n!
f(n+1) (X) = x)n+1 ; therefore: f(n+1)(c) = (1 C)n+1

Thus we have:

__~1 n+1 _ _—1 1 n+1
Rn(x,0) = (+1)v((1 c)n+1)( x) _(n+1)((1—c)”+1)(x) '

Notice that we can rewrite this as:

n+1

1 X n+1
(n+1) | (1—c) |

0 <|R,(x,0)| =

Since —1 <x < 0and1—c > 1, wehave |i| < 1.

X

< 1, weknowthat lim a™ = 0.

n—-0o

Ifwelet a =
1-c

Thus by the squeeze theorem we can conclude that lim |R,,(x,0)| = 0 and
n—>00

thus lim R, (x,0) = 0 forall —1 < x < 0.

n— 0o

15
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1
Ex. Let f(x) = e_(x_z) forx >0
=0 forx <0

Show that the Taylor Series for f(x) around a = 0 does not converge to f (x)
forx > 0.

As we noted in the last example in the section on Differentiation, for this function
f(0) = f'(0) = -+ = f™(0) = 0. Thus the Taylor series around a = 0 is:

fx) =f00)+f'(0)x +%f”(0)x2 + %fﬂ(o)xn .
= 0.
Clearly,  f(x) = e_(xiz) forx >0

=0 forx <0

Is notequal to O for x > 0. So the Taylor series does not converge to the

function for x > 0 even though the function has an infinite number of
derivatives.



