Differentiation

Def. Let f be a real valued function on $[a, b] \subseteq \mathbb{R}$. We define the **derivative of f** at

$$
x \text{ as:} \qquad f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \text{ for } a < t < b, \ t \neq x
$$

if the limit exists.

Notice that we could also say, let $h = t - x$, so that $x + h = t$ and define $f'(x)$:

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.
$$

Theorem: Let f be defined on [a,b]. If f is differentiable at $x \in [a, b]$ (i.e. $f'(x)$ exists at $x \in [a, b]$ then f is continuous at x.

Proof: To be continuous at x we must show that $\lim_{t\to x} f(t) = f(x)$ or equivalently: lim $\lim_{t \to x} (f(t) - f(x)) = 0.$

Notice that $f(t) - f(x) = \frac{(f(t) - f(x))}{t}$ $\left[\frac{(t-x)}{(t-x)}\right](t-x);$ so we have: lim $t\rightarrow x$ $(f(t) - f(x)) = \lim$ $t\rightarrow x$ $\left\{ \frac{f(t)-f(x)}{t-x}\right\}$ $\frac{f^{-1}(x)}{t-x} \Big] (t-x) \}$ $=$ lim $t\rightarrow x$ $\frac{f(f(t)-f(x))}{t-x}$ $\frac{1}{t-x}$] $\lim_{t\to x}$ $t\rightarrow x$ $(t - x)$ $= (f'(x))(0) = 0.$

So differentiability implies continuity, but the converse is not true.

Continuity does not imply differentiability.

Ex. $f(x) = |x|$ is continuous at $x = 0$. Show f is not differentiable at $x = 0$.

lim $t\rightarrow 0^+$ $f(t)-f(0)$ $\frac{f(t)}{t-0} = \lim_{t \to 0^+}$ $t\rightarrow 0^+$ t $\frac{c}{t} = 1$ since $f(t) = |t| = t$ for $t > 0$ lim $\overline{t\rightarrow 0^{-}}$ $f(t)-f(0)$ $\frac{f(t)}{t-0} = \lim_{t \to 0^-}$ $t\rightarrow 0^ -t$ $\frac{\partial^2 t}{\partial t} = -1$ since $f(t) = |t| = -t$ for $t < 0$. Thus lim $t\rightarrow 0$ $f(t)-f(0)$ $\frac{f(-f)}{f(-f)}$ does not exist, so $f'(0)$ does not exist. It's easy enough to prove that $f(x) = |x|$ is continuous at $x = 0$ so we will skip it

here.

In fact it's possible to have a function on ℝ which is continuous everywhere and differentiable nowhere.

Theorem: f , g : $[a, b] \to \mathbb{R}$ are differentiable at $x \epsilon[a, b]$, then $f \pm g$, fg , and f \overline{g} (where $g(x) \neq 0$) are differentiable at $x \in [a, b]$ and:

a.
$$
(f \pm g)'(x) = f'(x) \pm g'(x)
$$

\nb. $(fg)' = f(x)g'(x) + g(x)f'(x)$
\nc. $\left(\frac{f}{g}\right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

Proof:

a.
$$
(f \pm g)'(x) = \lim_{t \to x} \frac{(f \pm g)(t) - (f \pm g)(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \pm \lim_{t \to x} \frac{g(t) - g(x)}{t - x}
$$

= $f'(x) \pm g'(x)$.

b. Let $h = fg$; notice that we can write:

$$
h(t) - h(x) = f(t)[g(t) - g(x)] + g(x)[f(t) - f(x)]; \text{ so we have}
$$

$$
\frac{h(t) - h(x)}{t - x} = \frac{f(t)[g(t) - g(x)] + g(x)[f(t) - f(x)]}{t - x}.
$$

Now take limits on both sides:

$$
\lim_{t \to x} \frac{h(t) - h(x)}{t - x} = \lim_{t \to x} \frac{f(t)[g(t) - g(x)] + g(x)[f(t) - f(x)]}{t - x}
$$
\n
$$
= \lim_{t \to x} f(t) \frac{[g(t) - g(x)]}{t - x} + \lim_{t \to x} g(x) \frac{[f(t) - f(x)]}{t - x}
$$
\n
$$
= f(x)g'(x) + g(x)f'(x).
$$

c. Let
$$
h = \frac{f}{g}
$$
.
\n
$$
h(t) - h(x) = \frac{f(t)}{g(t)} - \frac{f(x)}{g(x)} = \frac{f(t)g(x) - f(x)g(t)}{g(t)g(x)}
$$
\n
$$
= \frac{1}{g(t)g(x)} [g(x)(f(t) - f(x)) - f(x)(g(t) - g(x))];
$$
\n
$$
\Rightarrow \frac{h(t) - h(x)}{t - x} = \frac{1}{g(t)g(x)} [g(x)(\frac{f(t) - f(x)}{t - x}) - f(x)(\frac{g(t) - g(x)}{t - x})].
$$

Now takes limits as t goes to x on both sides:

$$
h'(x) = \lim_{t \to x} \frac{h(t) - h(x)}{t - x}
$$

=
$$
\lim_{t \to x} \frac{1}{g(t)g(x)} [g(x) \left(\frac{f(t) - f(x)}{t - x} \right) - f(x) \left(\frac{g(t) - g(x)}{t - x} \right)]
$$

=
$$
\frac{1}{(g(x))^2} [g(x)f'(x) - f(x)g'(x)]
$$

=
$$
\frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}.
$$

Ex. If $f(x) = c$, a constant, then $f'(x) = 0$.

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{c - c}{t - x} = 0.
$$

Ex. If $f(x) = x$, then $f'(x) = 1$.

$$
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{t - x}{t - x} = 1.
$$

By the previous theorem, polynomials are differentiable everywhere and rational functions (i.e. functions of the form $f(x)$ $g(x)$ where f , g are polynomials) are differentiable everywhere that the denominator is not 0.

Theorem (Chain Rule) Suppose f is continuous on $[a, b]$, and $f'(x)$ exists at some point $x \in [a, b]$. Suppose g is defined on an interval which contains the range of f, and g is differentiable at the point $f(x)$. If $h(t) = g(f(t))$ $a \le t \le b$ then h is differentiable at $t = x$ and $h'(x) = g'(f(x)) \cdot f'(x)$.

Ex.
$$
h(t) = (t^3 + 2t)^9
$$
, $\implies g(t) = t^9$, $f(t) = t^3 + 2t$
\n $h'(x) = g'(f(x)) \cdot f'(x)$;
\n $g'(t) = 9t^8$, so $g'(f(x)) = 9(x^3 + 2x)^8$; $f'(x) = 3x^2 + 2$

 $h'(x) = 9(x^3 + 2x)^8(3x^2 + 2).$

Proof:
$$
h'(x) = \lim_{t \to x} \frac{h(t) - h(x)}{t - x} = \lim_{t \to x} \frac{g(f(t)) - g(f(x))}{t - x}
$$

$$
= \lim_{t \to x} [(\frac{g(f(t)) - g(f(x))}{f(t) - f(x)}) (\frac{f(t) - f(x)}{t - x})].
$$

Note: This last step is fine as long as $f(t) \neq f(x)$.

Since f is continuous, as $t \to x$, $f(t) \to f(x)$, so we have:

$$
h'(x) = g'(f(x)) \cdot f'(x).
$$

Ex. Let $f(x) = x sin(\frac{1}{x})$ $\frac{1}{x}$ $x \neq 0$ $= 0$ $x = 0.$

As we saw earlier, $f(x)$ is continuous everywhere (including $x = 0$). Where is $f(x)$ differentiable?

If $x \neq 0$ then we can use the product rule and the chain rule, and we have:

$$
f'(x) = x \left(\cos\left(\frac{1}{x}\right)\right) \left(-\frac{1}{x^2}\right) + \sin\left(\frac{1}{x}\right)
$$

$$
= -\frac{1}{x} \left(\cos\left(\frac{1}{x}\right)\right) + \sin\left(\frac{1}{x}\right).
$$

At $x = 0$ we have to apply the definition of $f'(0)$.

$$
f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0} \frac{t \sin(\frac{1}{t})}{t} = \lim_{t \to 0} \sin(\frac{1}{t}); \text{ which does not exist.}
$$

So $f(x)$ is continuous everywhere and differentiable everywhere except $x = 0$.

Ex. Let $f(x) = x^2 sin(\frac{1}{x})$ $\frac{1}{x}$ $x \neq 0$

$$
= 0 \qquad \qquad x = 0.
$$

Where is $f(x)$ continuous? Where is $f(x)$ differentiable (i.e. $f'(x)$ exists)? Where is $f'(x)$ continuous?

We can show that $f(x)$ is continuous everywhere by showing the $f'(x)$ exists for all $x \in \mathbb{R}$, which is done below.

Where is $f(x)$ differentiable?

If $x \neq 0$ then we can use the product rule and the chain rule, and we have:

$$
f'(x) = x^2 \left(\cos\left(\frac{1}{x}\right)\right) \left(-\frac{1}{x^2}\right) + 2x \sin\left(\frac{1}{x}\right)
$$

$$
= -\cos\left(\frac{1}{x}\right) + 2x \sin\left(\frac{1}{x}\right).
$$

Notice that lim $x\rightarrow 0$ $f^{\,\prime}(x)$ does not exist. Thus, at the very least, $f^{\,\prime}(x)$ is not continuous at $x = 0$.

Does $f'(0)$ exist?

At $x = 0$ we have to apply the definition of $f'(0)$.

$$
f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0} \frac{t^2 \sin(\frac{1}{t})}{t} = \lim_{t \to 0} (t \sin(\frac{1}{t})) = 0.
$$

We need to justify the last step, \lim_{\longrightarrow} $t\rightarrow 0$ $t \sin \frac{1}{t} = 0.$

Since $|sin x| \leq 1$ for any real number *x*, we have:

$$
0 \leq |t sin(\frac{1}{t})| \leq |t|.
$$

Since lim $t\rightarrow 0$ $0 = \lim_{h \to 0}$ $t\rightarrow 0$ $|t| = 0$, by the squeeze theorem $\lim_{h \to 0}$ $t\rightarrow 0$ $|tsin \frac{1}{t}| = 0.$ Now since lim $t \rightarrow a$ $|f(t)| = 0$ if and only if \lim $t \rightarrow a$ $f(t) = 0$, we conclude that lim $t\rightarrow 0$ $t \sin \frac{1}{t} = 0$. So $f'(0) = 0$, and $f(x)$ is differentiable everywhere.

We saw that $f^{\,\prime}(x)$ is not continuous at $x=0.$ But is $f^{\,\prime}(x)$ continuous for $x\neq 0$? Notice that for $x \neq 0$:

$$
f''(x) = -\frac{1}{x^2} \sin\left(\frac{1}{x}\right) + 2\sin\left(\frac{1}{x}\right) - \frac{2}{x} \cos\left(\frac{1}{x}\right)
$$

which is finite for any $x \neq 0$, thus $f'(x)$ is continuous for $x \neq 0$.

Ex. Let
$$
f(x) = e^{-(\frac{1}{x^2})}
$$
 if $x > 0$
= 0 if $x \le 0$.

Determine where $f'(x)$ exists and where $f'(x)$ is continuous.

When $x \neq 0$ we can apply our differentiation rules:

$$
f'(x) = (e^{-\left(\frac{1}{x^2}\right)}\left(\frac{2}{x^3}\right) \quad \text{if } x > 0
$$

= 0 \quad \text{if } x < 0.

At $x=0$ we have to apply the definition of $f'(0)$.

$$
f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0}
$$
; if it exists.

For this limit to exist we need:

$$
\lim_{t \to 0^+} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0^-} \frac{f(t) - f(0)}{t - 0}.
$$

$$
\lim_{t \to 0^{-}} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0^{-}} \frac{0 - 0}{t - 0} = 0.
$$

$$
\lim_{t \to 0^+} \frac{f(t) - f(0)}{t - 0} = \lim_{t \to 0^+} \frac{e^{-\left(\frac{1}{t^2}\right)} - 0}{t - 0} = \lim_{t \to 0^+} \frac{1}{e^{\left(\frac{1}{t^2}\right)}}.
$$

Now let $u=\frac{1}{t}$ $\frac{1}{t}$; then as $t \to 0^+$, $u \to \infty$ and we have:

lim $t\rightarrow 0^+$ $f(t)-f(0)$ $\frac{f^{-1}(0)}{f^{-1}} = \lim_{u \to \infty}$ u→∞ u (e^{u^2}) . Now apply L'Hopital's rule (more on that shortly) lim $t\rightarrow 0^+$ $f(t)-f(0)$ $\frac{f''(0)}{f''(0)} = \lim_{u \to \infty}$ u→∞ 1 $(2u)(e^{u^2})$ $= 0.$

So we have: $f'(0) = 0$ and when $x \neq 0$:

$$
f'(x) = (e^{-\left(\frac{1}{x^2}\right)}\left(\frac{2}{x^3}\right) \quad \text{if } x > 0
$$

= 0 \quad \text{if } x < 0.

So $f^{\,\prime}(x)$ exist for all $x\in\mathbb{R}$, but where is $f^{\,\prime}(x)$ continuous?

To show that $f'(x)$ is continuous for $x \neq 0$ we just need to show that $f''(x)$ exists for $x \neq 0$. So let's just find $f''(x)$ for $x \neq 0$.

$$
f''(x) = \frac{2}{x^3} \left(\frac{2}{x^3} e^{-\left(\frac{1}{x^2}\right)}\right) - \frac{6}{x^4} e^{-\left(\frac{1}{x^2}\right)} = \left(\frac{4}{x^6} - \frac{6}{x^4}\right) e^{-\left(\frac{1}{x^2}\right)} \quad \text{when } x > 0
$$

= 0 \quad \text{when } x < 0

which is finite for any $x \neq 0$. Thus $f'(x)$ is continuous for $x \neq 0$.

To see if $f^{\,\prime}(x)$ is continuous at $x=0$ we have to check to see if:

$$
\lim_{x \to 0} f'(x) = f'(0) = 0.
$$

For lim $x\rightarrow 0$ $f'(x)$ to exist, we need $\; \; \lim$ $x\rightarrow 0^+$ $f'(x) = \lim_{h \to 0}$ $\overline{x\rightarrow 0^{-}}$ $f'(x)$ (We need to check that the limit from the right equals the limit from the left because the function is defined differently for $x > 0$ and $x < 0$).

$$
\lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} (e^{-\left(\frac{1}{x^{2}}\right)})(\frac{2}{x^{3}})
$$

Make the substitution $u = \frac{1}{x^{2}}$; as $x \to 0^{+}$, $u \to \infty$

$$
\lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} (e^{-\left(\frac{1}{x^{2}}\right)})(\frac{2}{x^{3}}) = \lim_{u \to \infty} (e^{-u})(2u^{\frac{3}{2}})
$$

$$
= \lim_{u \to \infty} \frac{2u^{\frac{3}{2}}}{e^{u}}; \qquad \text{now apply L'Hopital's rule twice}
$$

$$
= \lim_{u \to \infty} \frac{3u^{\frac{1}{2}}}{e^{u}} = \lim_{u \to \infty} \frac{3}{e^{u}} \frac{1}{e^{u}}
$$

$$
= \lim_{u \to 0^{+}} \frac{3}{e^{u}} = 0.
$$

$$
\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^-} 0 = 0.
$$

 $u \rightarrow \infty$

 $2u$ 1 $\bar{2}e^{\mu}$

So
$$
\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = 0 = f'(0)
$$

and $f'(x)$ is continuous at $x=0$ and hence continuous everywhere.

In fact,

In fact,
$$
f(x) = e^{-(\frac{1}{x^2})} \quad \text{if } x > 0
$$

$$
= 0 \quad \text{if } x \le 0
$$

has infinitely many derivatives at $x=0$ (and for $x\neq 0)$ and $f^n(0)=0.$ We will see this function again when we talk about Taylor series.