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                                                     Differentiation 

 

Def.  Let 𝑓 be a real valued function on [𝑎, 𝑏] ⊆ ℝ.  We define the derivative of 𝒇 at 

𝑥 as:                  𝑓′(𝑥) = lim
𝑡→𝑥

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
  for  𝑎 < 𝑡 < 𝑏,   𝑡 ≠ 𝑥    

if the limit exists. 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that we could also say, let ℎ = 𝑡 − 𝑥, so that 𝑥 + ℎ = 𝑡 and define 

𝑓′(𝑥): 

                                        𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. 

  

𝑥                             t 

(𝑥, 𝑓(𝑥)) 

(𝑡, 𝑓(𝑡)) 

Slope=
𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
 

𝑦 = 𝑓(𝑥) 
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Theorem: Let 𝑓 be defined on [a,b].  If 𝑓 is differentiable at 𝑥𝜖[𝑎, 𝑏] (i.e. 𝑓′(𝑥) 

exists at 𝑥𝜖[𝑎, 𝑏]) then 𝑓 is continuous at 𝑥. 

 

Proof:  To be continuous at 𝑥 we must show that lim
𝑡→𝑥

𝑓(𝑡) = 𝑓(𝑥) or equivalently:   

lim
𝑡→𝑥

(𝑓(𝑡) − 𝑓(𝑥)) = 0. 

Notice that    𝑓(𝑡) − 𝑓(𝑥) = [
(𝑓(𝑡)−𝑓(𝑥))

𝑡−𝑥
] (𝑡 − 𝑥);       so we have:   

           lim
𝑡→𝑥

(𝑓(𝑡) − 𝑓(𝑥)) = lim
𝑡→𝑥

{[
(𝑓(𝑡)−𝑓(𝑥))

𝑡−𝑥
] (𝑡 − 𝑥)}      

                                             = lim
     𝑡→𝑥

[
(𝑓(𝑡)−𝑓(𝑥))

𝑡−𝑥
] lim

𝑡→𝑥
(𝑡 − 𝑥) 

                                             = (𝑓′(𝑥))(0) = 0. 

So differentiability implies continuity, but the converse is not true. 

Continuity does not imply differentiability. 

 

Ex.  𝑓(𝑥) = |𝑥|   is continuous at 𝑥 = 0. Show 𝑓 is not differentiable at 𝑥 = 0. 

 

lim
𝑡→0+

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0+

𝑡

𝑡
= 1             since 𝑓(𝑡) = |𝑡| = 𝑡  for 𝑡 > 0     

lim
𝑡→0−

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0−

−𝑡

𝑡
= − 1      since 𝑓(𝑡) = |𝑡| = −𝑡  for 𝑡 < 0. 

Thus lim
𝑡→0

𝑓(𝑡)−𝑓(0)

𝑡−0
  does not exist,  so 𝑓′(0) does not exist. 

It’s easy enough to prove that 𝑓(𝑥) = |𝑥|   is continuous at 𝑥 = 0 so we will skip it 

here. 
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In fact it’s possible to have a function on ℝ which is continuous everywhere and 

differentiable nowhere. 

Theorem:  𝑓, 𝑔: [𝑎, 𝑏] → ℝ are differentiable at 𝑥𝜖[𝑎, 𝑏], then 𝑓 ± 𝑔, 𝑓𝑔,  and  
𝑓

𝑔
 

(where 𝑔(𝑥) ≠ 0) are differentiable at 𝑥𝜖[𝑎, 𝑏] and: 

a.   (𝑓 ± 𝑔)′(𝑥) = 𝑓′(𝑥) ± 𝑔′(𝑥)            

𝑏.   (𝑓𝑔)′ = 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥)  

c.   (
𝑓

𝑔
)

′
= 

𝑔(𝑥)𝑓′(𝑥)−𝑓(𝑥)𝑔′(𝑥)

(𝑔(𝑥))2  

 

Proof:       

a.   (𝑓 ± 𝑔)′(𝑥) = lim
𝑡→𝑥

(𝑓±𝑔)(𝑡)−(𝑓±𝑔)(𝑥)

𝑡−𝑥
= lim

𝑡→𝑥

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
± lim

𝑡→𝑥

𝑔(𝑡)−𝑔(𝑥)

𝑡−𝑥
      

                                 = 𝑓′(𝑥) ± 𝑔′(𝑥). 

 

b.    Let ℎ = 𝑓𝑔;     notice that we can write: 

       ℎ(𝑡) − ℎ(𝑥) = 𝑓(𝑡)[𝑔(𝑡) − 𝑔(𝑥)] + 𝑔(𝑥)[𝑓(𝑡) − 𝑓(𝑥)];      so we have 

        
ℎ(𝑡)−ℎ(𝑥)

𝑡−𝑥
=

𝑓(𝑡)[𝑔(𝑡)−𝑔(𝑥)]+𝑔(𝑥)[𝑓(𝑡)−𝑓(𝑥)]

𝑡−𝑥
 .      
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Now take limits on both sides:          

    lim
   𝑡→𝑥

ℎ(𝑡)−ℎ(𝑥)
𝑡−𝑥

= lim
𝑡→𝑥

𝑓(𝑡)[𝑔(𝑡)−𝑔(𝑥)]+𝑔(𝑥)[𝑓(𝑡)−𝑓(𝑥)]

𝑡−𝑥
       

                                 = lim
𝑡→𝑥

 𝑓(𝑡)
[𝑔(𝑡)−𝑔(𝑥)]

𝑡−𝑥
+ lim 

𝑡→𝑥
𝑔(𝑥)

[𝑓(𝑡)−𝑓(𝑥)]

𝑡−𝑥
        

                                  = 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥).  

c.   Let ℎ =
𝑓

𝑔
 . 

   ℎ(𝑡) − ℎ(𝑥) =
𝑓(𝑡)

𝑔(𝑡)
−

𝑓(𝑥)

𝑔(𝑥)
=

𝑓(𝑡)𝑔(𝑥)−𝑓(𝑥)𝑔(𝑡)

𝑔(𝑡)𝑔(𝑥)
 

                        =
1

𝑔(𝑡)𝑔(𝑥)
 [𝑔(𝑥)(𝑓(𝑡) − 𝑓(𝑥)) − 𝑓(𝑥)(𝑔(𝑡) − 𝑔(𝑥))]; 

⇒   
ℎ(𝑡)−ℎ(𝑥)

𝑡−𝑥
=

1

𝑔(𝑡)𝑔(𝑥)
[𝑔(𝑥) (

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
) − 𝑓(𝑥) (

𝑔(𝑡)−𝑔(𝑥)

𝑡−𝑥
)].      

 

Now takes limits as 𝑡 goes to 𝑥 on both sides: 

 ℎ′(𝑥) = lim
𝑡→𝑥

ℎ(𝑡)−ℎ(𝑥)

𝑡−𝑥
  

           = lim
𝑡→𝑥

1

𝑔(𝑡)𝑔(𝑥)
[𝑔(𝑥) (

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
) − 𝑓(𝑥) (

𝑔(𝑡)−𝑔(𝑥)

𝑡−𝑥
)]  

           =
1

(𝑔(𝑥))2 [𝑔(𝑥)𝑓′(𝑥) − 𝑓(𝑥)𝑔′(𝑥)]    

            =
𝑔(𝑥)𝑓′(𝑥)−𝑓(𝑥)𝑔′(𝑥)

(𝑔(𝑥))2  . 
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Ex.  If 𝑓(𝑥) = 𝑐,  a constant, then 𝑓′(𝑥) = 0. 

                 𝑓′(𝑥) = lim
𝑡→𝑥

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
= lim

𝑡→𝑥

𝑐−𝑐

𝑡−𝑥
= 0.        

 

Ex.  If 𝑓(𝑥) = 𝑥, then 𝑓′(𝑥) = 1. 

                 𝑓′(𝑥) = lim
𝑡→𝑥

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
= lim

𝑡→𝑥

𝑡−𝑥

𝑡−𝑥
= 1.     

  

By the previous theorem, polynomials are differentiable everywhere and rational 

functions (i.e. functions of the form 
𝑓(𝑥)

𝑔(𝑥)
 where 𝑓, 𝑔 are polynomials) are 

differentiable everywhere that the denominator is not 0. 

 

Theorem (Chain Rule)  Suppose 𝑓 is continuous on [𝑎, 𝑏], and 𝑓′(𝑥) exists at some 

point 𝑥𝜖[𝑎, 𝑏].  Suppose 𝑔 is defined on an interval which contains the range of 𝑓, 

and 𝑔 is differentiable at the point 𝑓(𝑥).  If ℎ(𝑡) = 𝑔(𝑓(𝑡)) 𝑎 ≤ 𝑡 ≤ 𝑏  then 

ℎ is differentiable at 𝑡 = 𝑥 and   ℎ′(𝑥) = 𝑔′(𝑓(𝑥)) ∙ 𝑓′(𝑥). 

 

Ex.  ℎ(𝑡) = (𝑡3 + 2𝑡)9,   ⟹   𝑔(𝑡) = 𝑡9,      𝑓(𝑡) = 𝑡3 + 2𝑡 

      ℎ′(𝑥) = 𝑔′(𝑓(𝑥)) ∙ 𝑓′(𝑥);    

            𝑔′(𝑡) = 9𝑡8,    so  𝑔′(𝑓(𝑥)) = 9(𝑥3 + 2𝑥)8;         𝑓′(𝑥) = 3𝑥2 + 2  

                                                       

     ℎ′(𝑥) = 9(𝑥3 + 2𝑥)8(3𝑥2 + 2). 
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Proof:     ℎ′(𝑥) = lim
𝑡→𝑥

ℎ(𝑡)−ℎ(𝑥)
𝑡−𝑥

= lim
𝑡→𝑥

𝑔(𝑓(𝑡))−𝑔(𝑓(𝑥))
𝑡−𝑥

         

                          = lim
𝑡→𝑥

[(
ℎ(𝑡)−ℎ(𝑥)

𝑓(𝑡)−𝑓(𝑥)
)(

𝑓(𝑡)−𝑓(𝑥)

𝑡−𝑥
)].        

Note: This last step is fine as long as 𝑓(𝑡) ≠ 𝑓(𝑥).  

 

Since 𝑓 is continuous, as 𝑡 → 𝑥,  𝑓(𝑡) → 𝑓(𝑥), so we have: 

                ℎ′(𝑥) = 𝑔′(𝑓(𝑥)) ∙ 𝑓′(𝑥).  

 

Ex.   Let 𝑓(𝑥) = 𝑥𝑠𝑖𝑛(
1

𝑥
)      𝑥 ≠ 0 

                          = 0                    𝑥 = 0. 

As we saw earlier, 𝑓(𝑥) is continuous everywhere (including 𝑥 = 0).  Where is 𝑓(𝑥) 

differentiable? 

 

If 𝑥 ≠ 0 then we can use the product rule and the chain rule, and we have: 

𝑓′(𝑥) = 𝑥 (cos (
1

𝑥
)) (−

1

𝑥2) + sin (
1

𝑥
)  

            = −
1

𝑥
(cos (

1

𝑥
)) + sin (

1

𝑥
).  

 

At 𝑥 = 0 we have to apply the definition of 𝑓′(0). 

𝑓′(0) = lim
𝑡→0

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0

𝑡𝑠𝑖𝑛(
1
𝑡
)

𝑡
= lim

𝑡→0
sin (

1

𝑡
) ;     which does not exist. 

So 𝑓(𝑥) is continuous everywhere and differentiable everywhere except 𝑥 = 0.  
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Ex.   Let 𝑓(𝑥) = 𝑥2𝑠𝑖𝑛(
1

𝑥
)      𝑥 ≠ 0 

                          = 0                    𝑥 = 0.  

Where is 𝑓(𝑥) continuous?  Where is 𝑓(𝑥) differentiable (i.e. 𝑓′(𝑥) exists)?  

Where is 𝑓′(𝑥) continuous? 

 

 

We can show that 𝑓(𝑥) is continuous everywhere by showing the 𝑓′(𝑥) exists for 

all 𝑥 ∈ ℝ, which is done below. 

Where is  𝑓(𝑥) differentiable? 

If 𝑥 ≠ 0 then we can use the product rule and the chain rule, and we have: 

𝑓′(𝑥) = 𝑥2 (cos (
1

𝑥
)) (−

1

𝑥2) + 2𝑥sin (
1

𝑥
)  

            = − cos (
1

𝑥
) + 2𝑥sin (

1

𝑥
) . 

Notice that  lim
𝑥→0

𝑓′(𝑥) does not exist.  Thus, at the very least, 𝑓′(𝑥) is not 

continuous at 𝑥 = 0. 

 

Does 𝑓′(0) exist? 

At 𝑥 = 0 we have to apply the definition of 𝑓′(0). 

𝑓′(0) = lim
𝑡→0

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0

𝑡2𝑠𝑖𝑛(
1
𝑡
)

𝑡
= lim (t

𝑡→0
𝑠𝑖𝑛(

1

𝑡
)) = 0.      
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We need to justify the last step, lim
𝑡→0

𝑡𝑠𝑖𝑛
1

𝑡
= 0. 

Since |𝑠𝑖𝑛𝑥| ≤ 1 for any real number 𝑥, we have: 

0 ≤ |𝑡𝑠𝑖𝑛 (
1

𝑡
) | ≤ |𝑡|. 

Since lim
𝑡→0

0 = lim
𝑡→0

|𝑡| = 0, by the squeeze theorem lim
𝑡→0

| 𝑡𝑠𝑖𝑛
1

𝑡
| = 0. 

Now since lim
𝑡→𝑎

|𝑓(𝑡)| = 0 if and only if lim
𝑡→𝑎

𝑓(𝑡) = 0, we conclude that  

lim
𝑡→0

𝑡𝑠𝑖𝑛
1

𝑡
= 0 .   

So 𝑓′(0) = 0, and 𝑓(𝑥) is differentiable everywhere.  

 

We saw that 𝑓′(𝑥) is not continuous at 𝑥 = 0.  But is 𝑓′(𝑥) continuous for 𝑥 ≠ 0? 

Notice that for 𝑥 ≠ 0: 

𝑓′′(𝑥) = −
1

𝑥2 sin (
1

𝑥
) + 2sin (

1

𝑥
) −

2

𝑥
cos (

1

𝑥
)     

which is finite for any 𝑥 ≠ 0, thus 𝑓′(𝑥) is continuous for 𝑥 ≠ 0. 

 

Ex.   Let   𝑓(𝑥) = 𝑒
−(

1

𝑥2)
      𝑖𝑓  𝑥 > 0 

                         = 0               𝑖𝑓  𝑥 ≤ 0. 

Determine where 𝑓′(𝑥) exists and where 𝑓′(𝑥) is continuous.   
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When 𝑥 ≠ 0 we can apply our differentiation rules: 

𝑓′(𝑥) = (𝑒
−(

1

𝑥2)
)(

2

𝑥3 )        𝑖𝑓  𝑥 > 0     

            = 0                              𝑖𝑓  𝑥 < 0. 

 

At 𝑥 = 0 we have to apply the definition of 𝑓′(0).  

𝑓′(0) = lim
𝑡→0

𝑓(𝑡)−𝑓(0)

𝑡−0
 ; if it exists.      

 For this limit to exist we need: 

                  lim
𝑡→0+

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0−

𝑓(𝑡)−𝑓(0)

𝑡−0
 .  

 

lim
𝑡→0−

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0−

0−0

𝑡−0
= 0.    

  

 lim
𝑡→0+

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

𝑡→0+

𝑒
−(

1

𝑡2
)
−0

𝑡−0
 = lim

𝑡→0+

1
𝑡

𝑒
(

1

𝑡2
)
 .         

Now let 𝑢 =
1

𝑡
 ;    then as 𝑡 → 0  𝑢 → ∞  and we have: 

lim
𝑡→0+

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

u→∞

u

(𝑒𝑢2)
.        Now apply L’Hopital’s rule (more on that shortly) 

lim
𝑡→0+

𝑓(𝑡)−𝑓(0)

𝑡−0
= lim

u→∞

1

(2u)(𝑒𝑢2)
= 0.        
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So we have:    𝑓′(0) = 0  and when 𝑥 ≠ 0: 

𝑓′(𝑥) = (𝑒
−(

1

𝑥2)
) (

2

𝑥3 )        𝑖𝑓  𝑥 > 0          

            = 0                               𝑖𝑓  𝑥 < 0 . 

 

So 𝑓′(𝑥) exist for all 𝑥 ∈ ℝ, but where is 𝑓′(𝑥) continuous?  

 

To show that 𝑓′(𝑥) is continuous for 𝑥 ≠ 0 we just need to show that 𝑓′′(𝑥) 

exists for 𝑥 ≠ 0.  So let’s just find 𝑓′′(𝑥) for 𝑥 ≠ 0. 

𝑓′′(𝑥) =
2

𝑥3 (
2

𝑥3 𝑒
−(

1

𝑥2)
) −

6

𝑥4 𝑒
−(

1

𝑥2)
= (

4

𝑥6 −
6

𝑥4)𝑒
−(

1

𝑥2)
      when 𝑥 > 0     

               = 0                                                                                                        when 𝑥 < 0 

which is finite for any 𝑥 ≠ 0.  Thus 𝑓′(𝑥) is continuous for 𝑥 ≠ 0. 

 

To see if 𝑓′(𝑥) is continuous at 𝑥 = 0 we have to check to see if: 

              lim
𝑥→0

𝑓′(𝑥) = 𝑓′(0) = 0. 

 

For lim
𝑥→0

𝑓′(𝑥) to exist, we need  lim
𝑥→0+

𝑓′(𝑥) = lim
𝑥→0−

𝑓′(𝑥)  (We need to check 

that the limit from the right equals the limit from the left because the function is 

defined differently for 𝑥 > 0 and 𝑥 < 0). 
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lim
𝑥→0+

𝑓′(𝑥) = lim
𝑥→0+

 (𝑒
−(

1

𝑥2)
)(

2

𝑥3 )   

Make the substitution   𝑢 =
1

𝑥2 ;   as 𝑥 → 0+,  𝑢 → ∞     

 lim
𝑥→0+

𝑓′(𝑥) = lim
𝑥→0+

(𝑒
−(

1

𝑥2)
)(

2

𝑥3)  = lim
𝑢→∞

(𝑒−𝑢)(2𝑢
3

2)  

                        = lim
𝑢→∞

 
2𝑢

3
2

𝑒𝑢  ;               now apply L’Hopital’s rule twice     

                     = lim
𝑢→∞

3𝑢
1
2

𝑒𝑢 = lim
𝑢→∞

3
2𝑢

−1
2

𝑒𝑢        

                     = lim
𝑢→∞

3

2𝑢
1
2𝑒𝑢

= 0.      

 

lim
𝑥→0−

𝑓′(𝑥) = lim
𝑥→0−

0 = 0.  

 

So  lim
𝑥→0+

𝑓′(𝑥) = lim
𝑥→0−

𝑓′(𝑥) = 0 = 𝑓′(0)   

and 𝑓′(𝑥) is continuous at 𝑥 = 0 and hence continuous everywhere. 

 

In fact,           𝑓(𝑥) = 𝑒
−(

1

𝑥2)
     𝑖𝑓  𝑥 > 0     

                                   = 0                 𝑖𝑓  𝑥 ≤ 0 

has infinitely many derivatives at 𝑥 = 0 (and for 𝑥 ≠ 0) and 𝑓𝑛(0) = 0. 

We will see this function again when we talk about Taylor series. 


