Recall that:

Def. Two subsets A, B of a metric space X, d are said to be **separated** if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$ (i.e., no point of A lies in the closure of B and no point of B lies in the closure of A).

Def. A set $E \subseteq X$, d a metric space is said to be **connected** if E is not the union of two nonempty separated sets.

Ex. if A = (0,1) and B = (1,2), then A and B are separated sets since $\overline{A} = [0,1], \overline{B} = [1,2]$ thus: $A \cap \overline{B} = (0,1) \cap [1,2] = \emptyset$ and $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset$. Thus the set $A \cup B = (0,1) \cup (1,2)$ is not a connected set.

Ex. If A = (0,1] and B = (1,2), then A and B are not separated since $\overline{B} = [1,2]$ and thus

$$A \cap \overline{B} = (0,1] \cap [1,2] = \{1\} \neq \emptyset$$

(notice that $\overline{A} \cap B = [0,1] \cap (1,2) = \emptyset$).

Theorem: A subset $E \subseteq \mathbb{R}$ is connected if and only if , if $x \in E$, $y \in E$ and x < z < y then $z \in E$.

Theorem: If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X then f(E) is connected.

Proof: (This will be a proof by contradiction) Assume the contrary, i.e. that f is a continuous mapping and f(E) is not connected.

Thus $f(E) = A \cup B$, where A and B are non-empty separated sets.

Let $G = E \cap f^{-1}(A)$, $H = E \cap f^{-1}(B)$.

Then $E = G \cup H$ and neither G nor H is empty.

Since $A \subseteq \overline{A}$, we have $G \subseteq f^{-1}(\overline{A})$ and $f^{-1}(\overline{A})$ is closed because f is continuous and \overline{A} is closed (inverse image of a closed set is closed when f is continuous).

Since $f^{-1}(\overline{A})$ is closed, $\overline{G} \subseteq f^{-1}(\overline{A})$.

This means that $f(\overline{G}) \subseteq \overline{A}$.

Since f(H) = B and $\overline{A} \cap B = \emptyset$ (A and B are separated sets), $\overline{G} \cap H = \emptyset$.

(If $y \in \overline{G} \cap H$, then $f(y) \in \overline{A}$ since $y \in \overline{G}$, and $f(y) \in B$ since $y \in H$, but $\overline{A} \cap B = \emptyset$).

A similar argument shows $G \cap \overline{H} = \emptyset$.

But that would mean that G, H are separated sets with $E = G \cup H$ and thus E is not connected, a contradiction.

Thus f(E) is connected.

Theorem (The Intermediate Value Theorem): Let f be a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous on [a, b]. If f(a) < f(b) and if f(a) < c < f(b); then there exists a point $x \in (a, b)$ such that f(x) = c.

Proof: [a, b] is connected so f([a, b]) is connected because f is continuous on [a, b].

From an earlier theorem we know that for any connected subset *E* of \mathbb{R} , if *x*, *y* \in *E* then for any x < z < y, $z \in E$.

Thus for any f(a) < c < f(b), $c \in f([a, b])$, i.e., there is a point $x \in (a, b)$ such that f(x) = c.

Notice that if f is not continuous, there need not be (but there could be) a point $x \in (a, b)$ such that f(x) = c.

Ex. f(x) = 1 $1 < x \le 2$

$$= -1 \quad 0 \le x \le 1$$

There is no point $x \in (0,2)$ where

f(x) = 0.5 (or any other value

strictly between 1 and -1.

Just because a function is not continuous doesn't mean there can't be a point $x \in (a, b)$ where f(x) = c.

Even though f(x) is discontinuous, it's still true that given any 0 < c < 1 there is an $x \in (0,2)$ such that f(x) = c.

One important applications of the Intermediate Value Theorem is to prove that a continuous function has a root in some interval, i.e. a point where f(x) = 0.

Ex. Suppose
$$f(x) = x^8 + x^5 + x^2 - 1$$
. Prove $f(x)$ has a root in [0,1].

f(x) is a polynomial so it is continuous on [0,1] (in fact it's continuous everywhere).

$$f(0) = -1$$

f(0) = 1

f(1) = 1 + 1 + 1 - 1 = 2.

Since -1 < 0 < 2, by the intermediate value theorem, there exists an $x \in (0,1)$ such that f(x) = 0.

Notice that in the previous problem we could also have said there is a point $x \in (0,1)$ such that $f(x) = \frac{\pi}{6}$, since $-1 < \frac{\pi}{6} < 2$.

Ex. A *f* function is said to have a "fixed point" if there is some point *p* where f(p) = p. Show that the function $f(x) = e^{-x}$ has a fixed point in the interval [0,1].

This is the same as asking to find that g(x) = f(x) - x has a zero, i.e. that $g(x) = e^{-x} - x$ has a root (or a zero) in [0,1].

g(x) is continuous because e^{-x} and x are continuous functions (we will just accept that e^{-x} is continuous for now).

 $g(0) = e^0 - 0 = 1$

$$g(1) = e^{-1} - 1 < 0$$

Thus by the intermediate value theorem there exists a point $p \in (0,1)$ such that g(p) = 0, ie, $e^{-p} - p = 0$, or $e^{-p} = p$.

That is, the function $f(x) = e^{-x}$ has a fixed point in the interval [0,1].