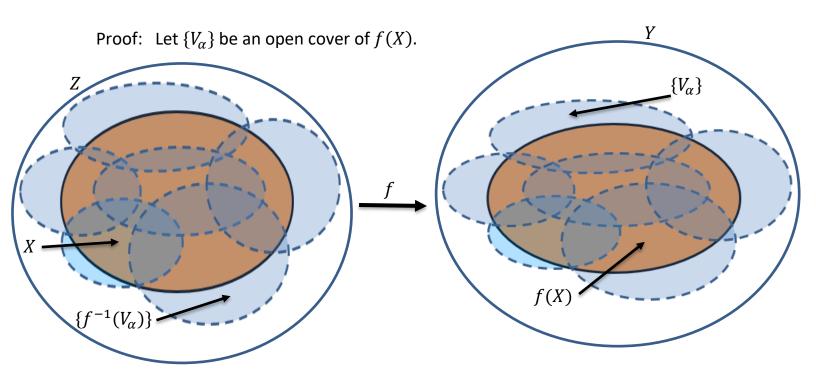
Continuity and Compactness

Def. A mapping $f: E \subseteq X \to \mathbb{R}^k$ is said to be **bounded** if there exists a real number M such that $||f(x)|| \le M$ for all $x \in E$.

Ex.
$$f(x,y) = x^2 + y^2$$
 is bounded for $E = \{(x,y) | |x| < 10, |y| \le 5\}$ since $|f(x,y)| \le 100 + 25 = 125 = M$;
But it is not bounded on $E = \mathbb{R}^2$.

Ex.
$$f(x,y)=e^{-(x^2+y^2)}$$
 is bounded for $E=\mathbb{R}^2$ since
$$|f(x,y)|=\left|e^{-(x^2+y^2)}\right|\leq 1=M.$$

Theorem: Suppose $f: X \to Y$ is a continuous mapping of a compact metric space X into a metric space Y then f(X) is compact.



Since f is continuous, $f^{-1}(V_{\alpha})$, is an open set in X (why?) and $X \subseteq \bigcup_{\alpha} f^{-1}(V_{\alpha})$.

Thus $\{f^{-1}(V_{\alpha})\}$ is an open cover of X.

Since X is compact there exists a finite subcover: $X \subseteq \bigcup_{i=1}^n f^{-1}(W_i)$, where $\{W_i\} \subseteq \{V_\alpha\}$.

Since $f(f^{-1}(E)) \subseteq E$; for $E \subseteq Y$,

(For example, if $f(x)=x^2$ and E=(-1,1); then $f^{-1}(-1,1)=(-1,1)$ and $f(f^{-1}(-1,1))=[0,1)\subseteq (-1,1)$.)

$$f(X) \subseteq \bigcup_{i=1}^n f(f^{-1}(W_i)) \subseteq \bigcup_{i=1}^n W_i$$
.

So $\{W_i\}$ is a finite subcover of f(X), and f(X) is compact.

Theorem: Suppose f is a continuous function on a compact metric space X into \mathbb{R} , and $M=sup_{p\in X}f(p)$ and $m=inf_{p\in X}f(p)$, then there exist points $p,q\in X$ such that f(p)=M and f(q)=m.

Proof: Since f is continuous and X is compact, f(X) is a compact subset of \mathbb{R} . By the Heine-Borel theorem we know that any compact subset of \mathbb{R} (or \mathbb{R}^n) is closed and bounded.

Hence f(X) contains $M = \sup_{p \in X} f(p)$ and $m = \inf_{p \in X} f(p)$.

For suppose $M = \sup_{p \in X} f(p)$ and $M \notin f(X)$.

Then for every h > 0 there exists a point $x \in f(X)$ such that M - h < x < M.

Otherwise, M-h would be an upper bound for f(X) and M wouldn't be the least upper bound.

But this means that M is a limit point of f(X). Since f(X) is closed $M \in f(X)$.

A similar argument works for the infimum.

This gives us the theorem from first year Calculus that a continuous function on a closed, bounded interval (i.e. a compact subset of \mathbb{R}) takes on its maximum and minimum values.

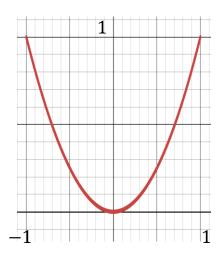
Ex. Let $f(x) = x^2$; and X = [-1,1].

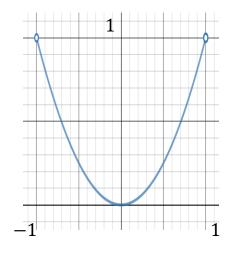
f(X) = [0,1]; minimum value=0, maximum value=1. (In red below)

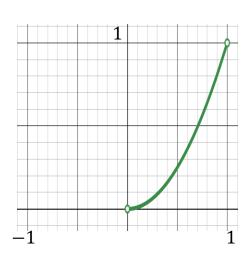
If X = (-1,1); i.e. X is not compact notice that:

f(X) = [0,1); f takes on its minimum value but not its maximum value. (In blue below)

If X = (0,1), then f(X) = (0,1) and f doesn't take on either its minimum or maximum values. (In green below)

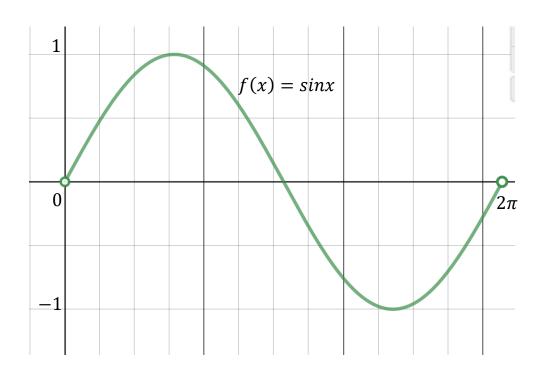






Note: A continuous function on a non-compact set <u>can</u> take on its minimum and/or maximum values, but it does not have to. A continuous function on a compact set <u>must</u> take on its maximum and minimum values.

Ex. Let f(x) = sinx; and $X = (0,2\pi)$. Then f(X) = [-1,1]. So f takes on its maximum and minimum values even though $X = (0,2\pi)$ is not compact.



Def. Let $f: X \to Y$; X, Y are metric spaces. We say f is **uniformly continuous** on X if for every $\epsilon > 0$ there exists a $\delta > 0$ for all $p, q \in X$ such that if $d_X(p,q) < \delta$ then $d_Y \big(f(p), f(q) \big) < \epsilon$.

For any interval $I \subseteq \mathbb{R}$ with $f: I \subseteq \mathbb{R} \to \mathbb{R}$, f is uniformly continuous on I means for every $\epsilon > 0$ there exists a $\delta > 0$ for all $x, a \in I$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$.

Notice the difference between continuity and uniform continuity:

- 1. For uniform continuity, δ does not depend on the point in X you are at. For continuity, the δ can depend on which point in X you are at (with both continuity and uniform continuity, δ does depend on ϵ).
- 2. Uniform continuity is a property of a set of points, not a single point. Continuity is a property at a point and a set of points.
- 3. If a function is uniformly continuous on a set X, then it is also continuous on X. However, if a function is continuous on a set X it may, or may not be, uniformly continuous on X.

Ex. Let $f(x) = \frac{1}{x}$; 0 < x < 1. Show that f(x) is continuous on (0,1) but not uniformly continuous.

To show $f(x)=\frac{1}{x}$ is continuous at any point $a\epsilon(0,1)$ we must show that given any $\epsilon>0$ we can find a $\delta>0$ such that if $|x-a|<\delta$ then $\left|\frac{1}{x}-\frac{1}{a}\right|<\epsilon$. Note that δ can depend on both the value of ϵ and the value of "a".

Let's work backward from the ϵ statement to get the δ statement.

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \left|\frac{a - x}{ax}\right| = \frac{1}{|ax|}|x - a|.$$

We need an upper bound on $\frac{1}{|ax|} = \frac{1}{ax}$; since a, x > 0.

Choose $\delta \leq \frac{a}{2}$. (Since 0 < a < 1, we have to choose a δ neighborhood that stays away from x = 0, otherwise $\frac{1}{ax}$ won't be bounded above).

Then we have that
$$|x-a|<\frac{a}{2}$$
 or
$$-\frac{a}{2} < x - a < \frac{a}{2} \qquad \text{now add a}$$

$$\frac{a}{2} < x < \frac{3a}{2};$$
 Since $\frac{a}{2}$, x , $\frac{3a}{2} > 0$: $\frac{2}{a} > \frac{1}{x} > \frac{2}{3a};$ now multiply through by $\frac{1}{a} > 0$.
$$\frac{2}{a^2} > \frac{1}{ax} > \frac{2}{3a^2} \implies \frac{1}{|ax|} < \frac{2}{a^2}.$$

Thus we have: if $\delta \leq \frac{a}{2}$ then

$$\left| \frac{1}{x} - \frac{1}{a} \right| = \frac{1}{|ax|} |x - a| < \frac{2}{a^2} |x - a| < \frac{2}{a^2} \delta < \epsilon.$$

$$\frac{2}{a^2}\delta < \epsilon$$
 is equivalent to $\delta < \frac{a^2}{2}\epsilon$.

Choose $\delta = \min\left(\frac{a}{2}, \frac{a^2}{2}\epsilon\right)$ (remember we chose $\delta \leq \frac{a}{2}$ earlier)

Now let's show that this δ works.

If
$$|x - a| < \delta = \min(\frac{a}{2}, \frac{a^2}{2}\epsilon)$$
 then we have:

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \frac{1}{|ax|}|x - a| < \frac{2}{a^2}|x - a| \qquad \text{since } \delta \le \frac{a}{2}$$

$$\left|\frac{1}{x} - \frac{1}{a}\right| < \frac{2}{a^2} |x - a| < \frac{2}{a^2} \delta \le \frac{2}{a^2} \left(\frac{a^2}{2} \epsilon\right) = \epsilon \quad \text{since } \delta \le \frac{a^2}{2} \epsilon.$$

Thus we have shown that $f(x) = \frac{1}{x}$ continuous at $a \in (0,1)$.

Now let's show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

Let's fix an $\epsilon > 0$.

To be uniformly continuous we need to find a $\delta>0$, that depends only on ϵ , such that if $|x-a|<\delta$ then $\left|\frac{1}{x}-\frac{1}{a}\right|<\epsilon$ for all $a,x\in(0,1)$.

But if $\epsilon>0$ is fixed, regardless of what δ one chooses, by moving "a" toward 0

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \frac{1}{|ax|}|x - a| \to \infty \text{ for } |x - a| < \delta.$$

So δ must depend on "a" and $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

Ex. Show $f(x) = x^2$ is uniformly continuous on [-1,1].

We must show that given any $\epsilon>0$ there exists a $\delta>0$ for all $a,x\in[-1,1]$ such that if $|x-a|<\delta$ then $|x^2-a^2|<\epsilon$.

Let's start with the ϵ statement:

$$|x^2 - a^2| = |x - a||x + a|.$$

But we also know that $a, x \in [-1,1]$, so $|a| \le 1$ and $|x| \le 1$.

Now using the triangle inequality: $|x + a| \le |x| + |a| \le 1 + 1 = 2$.

So
$$|x^2 - a^2| = |x - a||x + a| \le 2|x - a| < 2\delta$$
.

So if we can force $\,2\delta < \epsilon$, we'll almost be done.

So if we choose $\delta < \frac{\epsilon}{2}$ (notice δ doesn't depend on a) we have:

$$|x^2 - a^2| = |x - a||x + a| \le 2|x - a|$$
 because $|a| \le 1$ and $|x| \le 1$

$$|x^2 - a^2| \le 2|x - a| < 2\delta < 2\left(\frac{\epsilon}{2}\right) = \epsilon$$
 because $\delta < \frac{\epsilon}{2}$.

Hence $f(x) = x^2$ is uniformly continuous on [-1,1].

Theorem: Let $f: X \to Y$, be continuous, X, Y metric spaces with X compact, then f is uniformly continuous on X.

Notice that $f(x)=x^2$ is uniformly continuous on (-1,1) (as well as on [-1,1]) even though (-1,1) is not compact. The same δ,ϵ argument that shows that $f(x)=x^2$ is uniformly continuous on [-1,1] also show that it's uniformly continuous on (-1,1). Thus a continuous function on a compact set **must** be uniformly continuous on the compact set. A continuous function on a noncompact set, may or may not be uniformly continuous on that set.

Some special properties of uniformly continuous functions:

- 1. If $f\colon E\to Y$ is uniformly continuous on a metric space E and $\{p_n\}$ is a Cauchy sequence in E, then $\{f(p_n)\}$ is a Cauchy sequence in Y. Notice that $f(x)=\frac{1}{x}$ is continuous on $(0,\infty)$, but not uniformly continuous. $\{\frac{1}{n}\}$ is a Cauchy sequence in $(0,\infty)$, but $\{f\left(\frac{1}{n}\right)\}=\{n\}$ is not.
- 2. If $f: E \subseteq \mathbb{R} \to \mathbb{R}$ is uniformly continuous, E a bounded interval, then $\int_E f(x) dx$ is finite. $f(x) = \frac{1}{x}$ is continuous on (0,1), but not uniformly continuous. $\int_0^1 \frac{1}{x} dx$ is not finite.

Notice also that you can have bounded continuous functions that are not uniformly continuous (e.g. $f(x) = \sin\left(\frac{1}{x}\right)$; $0 < x < 2\pi$) and unbounded continuous functions that are uniformly continuous (e.g. f(x) = x; $-\infty < x < \infty$).

Ex. Prove that $f(x) = \frac{x}{1-x}$ is uniformly continuous on $[2, \infty)$.

We must show given any $\epsilon>0$ there exists a $\delta>0$ for all $a,x\in[2,\infty)$ such that if $|x-a|<\delta$ then $\left|\frac{x}{1-x}-\frac{a}{1-a}\right|<\epsilon$.

Let's start with the ϵ statement:

$$\left| \frac{x}{1-x} - \frac{a}{1-a} \right| = \left| \frac{x(1-a) - a(1-x)}{(1-x)(1-a)} \right| = \left| \frac{(x-a)}{(1-x)(1-a)} \right|$$
$$= |x - a| \left| \frac{1}{(1-x)(1-a)} \right|.$$

Now we must find an upper bound on $\left| \frac{1}{(1-x)(1-a)} \right|$ independent of "a".

Since
$$2 \le x$$
 and $2 \le a$: $-1 \le \frac{1}{1-x} < 0$ and $-1 \le \frac{1}{1-a} < 0$. Thus we can say: $0 < (\frac{1}{1-x})(\frac{1}{1-a}) \le 1$.

Thus we have:

$$\left| \frac{x}{1-x} - \frac{a}{1-a} \right| = |x - a| \left| \frac{1}{(1-x)(1-a)} \right| \le 1|x - a| = \delta.$$

So if we can force $\delta < \epsilon$ we'll almost be done.

So choose $\delta < \epsilon$ which is independent of "a".

Now let's show $\delta < \epsilon$ works.

If $|x - a| < \delta < \epsilon$ then:

$$\left|\frac{x}{1-x} - \frac{a}{1-a}\right| = |x - a| \left|\frac{1}{(1-x)(1-a)}\right| < |x - a| \quad \text{because } 2 \le x \text{ and } 2 \le a$$

$$\left|\frac{x}{1-x} - \frac{a}{1-a}\right| < |x - a| < \delta < \epsilon \quad \text{because } \delta < \epsilon.$$

Hence $f(x) = \frac{x}{1-x}$ is uniformly continuous on $[2, \infty)$.