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                                                            Continuity 

 

Def.  Suppose 𝑋 and 𝑌 are metric spaces, 𝐸 ⊆ 𝑋,  𝑝𝜖𝐸,  and 𝑓: 𝐸 → 𝑌.  Then 𝑓 is 

said to be Continuous at 𝒑 if for every 𝜖 > 0 there exists a 𝛿 > 0 such that for all 

points 𝑥𝜖𝐸, if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) <  𝜖.  Equivalently, we can say 

that 𝑓 is Continuous at 𝒑 if lim
𝑥→𝑝

𝑓(𝑥) = 𝑓(𝑝). 

 

 

 

 

 

 

 

 

If 𝑋 = 𝑌 = ℝ then 𝑓(𝑥) is Continuous at 𝒙 = 𝒄 means for every 𝜖 > 0 there 

exists a 𝛿 > 0 such that if |𝑥 − 𝑐| < 𝛿 then  |𝑓(𝑥) − 𝑓(𝑐)| < 𝜖. 
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𝛿 

𝑋 

𝑁𝛿(𝑝) 
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𝑓(𝑐) − 𝜖 

𝑦 = 𝑓(𝑥) 
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Def.  If 𝑓 is Continuous at every point of 𝐸, then 𝑓 is said to be Continuous on 𝑬. 

 

Note:  For lim
𝑥→𝑝

𝑓(𝑥) to exist, 𝑓(𝑝) does not need to be defined (although it can 

be).  For 𝑓(𝑥) to be continuous at 𝑝𝜖𝐸,  𝑓(𝑝) must be defined and equal to 

lim
𝑥→𝑝

𝑓(𝑥). 

 

If 𝑝𝜖𝐸 is an isolated point (i.e., there exists a neighborhood of 𝑝, 𝑁(𝑝) ⊆ 𝑋, such 

that 𝑁(𝑝) ∩ 𝐸 = {𝑝}) then every function that has 𝑝 in its domain is continuous 

at 𝑝𝜖𝐸.  We can see this by choosing 𝛿 > 0 such that 𝑑𝑋(𝑥, 𝑝) < 𝛿 implies 𝑥 = 𝑝. 

Then 𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) = 0 < 𝜖. 

 

 

Ex.  Let 𝐸 = [−1,1] ∪ {5} ⊆ ℝ;  and  𝑓: 𝐸 → ℝ is any function. Show that 𝑓 is 

continuous at 𝑥 = 5. 

 

      Given any 𝜖 > 0,  if 𝛿 < 3, for example, and 𝑥 ∈ 𝐸, then  𝑑(𝑥, 5) < 3 implies 

that 𝑥 = 5, and thus |𝑓(𝑥) − 𝑓(5)| = |𝑓(5) − 𝑓(5)| = 0 < 𝜖. 

Thus 𝑓 is continuous at 𝑥 = 5. 
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Theorem:  Suppose 𝑋, 𝑌, 𝑍 are metric spaces with 𝐸 ⊆ 𝑋, 𝑓: 𝐸 → 𝑌 and   

𝑔: 𝑓(𝐸) → 𝑍.   Let ℎ: 𝐸 → 𝑍 by ℎ(𝑥) = 𝑔(𝑓(𝑥)) for 𝑥𝜖𝐸.  If 𝑓 is continuous at 𝑝𝜖𝐸 

and if 𝑔 is continuous at 𝑓(𝑝)𝜖𝑌, then ℎ is continuous at 𝑝𝜖𝐸. 

 

Proof:  We must show that given any 𝜖 > 0 there exists a 𝛿 > 0 such that for all 

points 𝑥𝜖𝐸, if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 𝑑𝑍(ℎ(𝑥), ℎ(𝑝)) = 𝑑𝑍(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑝))) <  𝜖. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑔(𝑓(𝑝)) 

𝑔(𝑁𝛿′(𝑓(𝑝)) 
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𝑓(𝐸) 

𝑌 

𝑝 

𝛿 𝐸 

𝑋 

𝑓 

𝑔 

ℎ = 𝑔 ∘ 𝑓 
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Since 𝑔 is continuous at 𝑓(𝑝), we know we can find a 𝛿′ > 0 such that if 

𝑑𝑌(𝑦, 𝑓(𝑝)) < 𝛿′ then 𝑑𝑍(𝑔(𝑦), 𝑔(𝑓(𝑝))) <  𝜖. 

 

Since 𝑓 is continuous at 𝑝𝜖𝐸, we know we can find a 𝛿 > 0 such that if  

𝑑𝑋(𝑥, 𝑝) < 𝛿 then 𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) <  𝛿′ for all 𝑥𝜖𝐸. 

 

But this means that if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) <  𝛿′ for all 𝑥𝜖𝐸,  which 

in turn means that 𝑑𝑍(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑝))) <  𝜖. 

 

Hence we have shown that ℎ(𝑥) = 𝑔(𝑓(𝑥)) is continuous at 𝑥 = 𝑝. 

 

 

Theorem:  A mapping 𝑓: 𝑋 → 𝑌,  𝑋, 𝑌 metric spaces is continuous if and only if 

𝑓−1(𝑉) is open in 𝑋 for every open set 𝑉 ⊆ 𝑌. 

 

Proof:  First assume 𝑓 is continuous on 𝑋 and show that 𝑓−1(𝑉) is open in 𝑋 for 

every open set 𝑉 ⊆ 𝑌. 

 

 

 

 

 

 

𝑓(𝑝) 

𝜖 

𝑉 

𝑌 

𝑝 

𝛿 

𝑓−1(𝑉) 

𝑋 

𝑓 
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Let 𝑉 be any open subset of 𝑌.  We have to show that every point 𝑝 in 𝑓−1(𝑉) is 

an interior point of 𝑓−1(𝑉). 

Suppose 𝑝𝜖𝑓−1(𝑉).  Since 𝑉 is open, there exists an 𝜖 > 0 such that if 

𝑑𝑌(𝑓(𝑝), 𝑦) <  𝜖 then 𝑦𝜖𝑉  (this just says that since 𝑉 is open, we can find a 

neighborhood of 𝑓(𝑝) that lies entirely inside 𝑉). 

Since 𝑓 is continuous at 𝑝, there exists a 𝛿 > 0 such that if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 

𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) < 𝜖 ,  thus 𝑥𝜖𝑓−1(𝑉).   

 

Thus 𝑝 is an interior point of 𝑓−1(𝑉), and 𝑓−1(𝑉) is open. 

 

Now let’s assume that 𝑓−1(𝑉) is open in 𝑋 for every open set 𝑉 ⊆ 𝑌 and prove 

that 𝑓 is a continuous function on 𝑋. 

Fix a 𝑝𝜖𝑋 and choose any 𝜖 > 0. 

 

 

 

 

 

 

We need to show that we can find a 𝛿 > 0 such that if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 

𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) <  𝜖. 

Let 𝑉 be the set of all 𝑦𝜖𝑌 such that 𝑑𝑌(𝑦, 𝑓(𝑝)) <  𝜖. 

𝑉 is an open set in 𝑌 (since it’s a neighborhood of a point) and hence, by 

assumption,  𝑓−1(𝑉) is open in 𝑋. 

𝑓(𝑝) 

𝜖 

𝑌 
𝑉 = 𝑁𝜖(𝑓(𝑝))  

𝑝 

𝛿 

𝑁𝛿(𝑝) 

𝑓−1(𝑉) 

𝑋 

𝑓 
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Since 𝑓−1(𝑉) is open there exists a 𝛿 > 0 such that if 𝑑𝑋(𝑥, 𝑝) < 𝛿 then 𝑥 ∈ 𝑓−1(𝑉).  

But if 𝑥𝜖𝑓−1(𝑉) then 𝑓(𝑥)𝜖𝑉 which means that 𝑑𝑌(𝑓(𝑥), 𝑓(𝑝)) <  𝜖. 

Hence 𝑓 is continuous at 𝑝𝜖𝑋 for every p. 

Thus 𝑓 is continuous on 𝑋. 

 

Cor.    A mapping 𝑓: 𝑋 → 𝑌,  𝑋, 𝑌 metric spaces is continuous if and only if 𝑓−1(𝑉) 

is closed in 𝑋 for every closed set 𝑉 ⊆ 𝑌. 

 

Proof:  If 𝑉 is closed then 𝑉𝑐 is open. Thus by the theorem 𝑓 is continuous if and 

only if 𝑓−1(𝑉𝑐) is open.  The corollary follows from the fact that              

𝑓−1(𝑉𝑐) = (𝑓−1(𝑉))
𝑐
. 

                          

 

 

 

 

 

Note:  If 𝑓: 𝑋 → 𝑌 is continuous on 𝑋, it does NOT imply that: 

1.   if 𝑉 ⊆ 𝑋 is open then 𝑓(𝑉) ⊆ 𝑌 is open 

2.   If 𝑊 ⊆ 𝑋 is closed then 𝑓(𝑊) ⊆ 𝑌 is closed. 

 

Ex.  Let 𝑓: ℝ → ℝ by 𝑓(𝑥) = 𝑥2 is continuous at every point (we will show this 

shortly) in ℝ.  However, if 𝑉 = (−2, 2), which is open in ℝ, then 𝑓(𝑉) = [0,4) 

which is not open in ℝ. 

 𝑉                     𝑉𝑐  

𝑌 

𝑓−1(𝑉) 

(𝑓−1(𝑉))
𝑐

= 𝑓−1(𝑉𝑐) 

𝑋 

𝑓 
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Ex.  Let 𝑓: ℝ → ℝ by 𝑓(𝑥) =
1

1+𝑥2 is continuous at every point in ℝ.  However, if 

𝑊 = [0, ∞), which is closed in ℝ, then 𝑓(𝑊) = (0,1] which is not closed in ℝ. 

 

Ex.  Prove that 𝑓(𝑥) = 𝑥2 is continuous at 𝑥 = 0 and 𝑥 = 𝑎. 

 

To prove that 𝑓(𝑥) = 𝑥2 is continuous at 𝑥 = 0 we must show that given any 

 𝜖 > 0 there exists a 𝛿 > 0 such that if |𝑥 − 0| < 𝛿 then  |𝑥2 − 0| < 𝜖, 

i.e.  we must prove that lim
𝑥→0

𝑥2 = 0. 

 

Let’s start with the 𝜖 statement and work backwards to the 𝛿 statement. 

      |𝑥2 − 0| = |𝑥|2 < 𝜖   or    |𝑥| < √𝜖. 

 

Now choose 𝛿 = √𝜖. 

 

Now let’s show that this 𝛿 works. 

If |𝑥 − 0| = |𝑥| < 𝛿 = √𝜖   then  

|𝑥2 − 0| = |𝑥|2 < 𝜖    

Hence lim
𝑥→0

𝑥2 = 0,  and 𝑓(𝑥) = 𝑥2 is continuous at 𝑥 = 0. 
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To prove that 𝑓(𝑥) = 𝑥2 is continuous at 𝑥 = 𝑎 we must show that given any 

 𝜖 > 0 there exists a 𝛿 > 0 such that if |𝑥 − 𝑎| < 𝛿 then  |𝑥2 − 𝑎2| < 𝜖, 

i.e.  we must prove that lim
𝑥→𝑎

𝑥2 = 𝑎2.  

 

Let’s start with the 𝜖 statement and work backwards the 𝛿 statement. 

|𝑥2 − 𝑎2| = |(𝑥 + 𝑎)(𝑥 − 𝑎)| = |𝑥 + 𝑎||𝑥 − 𝑎|  

|𝑥 − 𝑎|  is part of the 𝛿 statement, the question is how big can |𝑥 + 𝑎| be?  

 

Let’s choose 𝛿 ≤ 1. 

That means:              |𝑥 − 𝑎| < 1              or equivalently:   

                           −1 < 𝑥 − 𝑎 < 1     

                           𝑎 − 1 < 𝑥 < 𝑎 + 1 ;     now  add “a”  to the entire inequality: 

                       2𝑎 − 1 < 𝑥 + 𝑎 < 2𝑎 + 1  

−2|𝑎| − 1 ≤ 2𝑎 − 1 < 𝑥 + 𝑎 < 2𝑎 + 1 ≤ 2|𝑎| + 1      so 

                                        |𝑥 + 𝑎| < 2|𝑎| + 1.      

This now means that: 

|𝑥2 − 𝑎2| = |𝑥 + 𝑎||𝑥 − 𝑎| < (2|𝑎| + 1)|𝑥 − 𝑎|. 

  

So if we can ensure that (2|𝑎| + 1)|𝑥 − 𝑎| < 𝜖  or equivalently:                        

                                                                     |𝑥 − 𝑎| < 
𝜖

2|𝑎|+1
                                  

we’ll be in business.  
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So just let 𝛿 = min (1,
𝜖

2|𝑎|+1
)         (notice that 𝛿 depends on both “a” and 𝜖).  

 

Now let’s show that this 𝛿 works: 

Given that |𝑥 − 𝑎| < 𝛿 we know that : 

|𝑥2 − 𝑎2| = |𝑥 + 𝑎||𝑥 − 𝑎| ≤ (2|𝑎| + 1)|𝑥 − 𝑎|         (since 𝛿 ≤ 1) 

                    < (2|𝑎| + 1)𝛿        

                    ≤ (2|𝑎| + 1)(
𝜖

2|𝑎|+1
)=𝜖                                      (since 𝛿 ≤

𝜖

2|𝑎|+1
).     

 

Hence lim
𝑥→𝑎

𝑥2 = 𝑎2, and 𝑓(𝑥) = 𝑥2 is continuous at 𝑥 = 𝑎. 

 

 

Ex.  Let   𝑓(𝑥) = 𝑥2     if 𝑥 ≠ 0 

                           = 4       if 𝑥 = 0. 

 

a.  Using a 𝛿, 𝜖 argument prove that 𝑓(𝑥)  is discontinuous at 𝑥 = 0 (i.e. prove 

that lim
𝑥→0

𝑓(𝑥) ≠ 𝑓(0) = 4 . ) 

b.   Prove that 𝑓(𝑥) is not continuous on ℝ by finding an open set 𝑈 such that 

𝑓−1(𝑈) is not open. 

c.   Prove that 𝑓(𝑥) is not continuous on ℝ by finding an closed set 𝑊 such that 

𝑓−1(𝑊) is not closed. 
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a.   We need to show that there exists an 𝜖 > 0 such that no matter how small 

𝛿 > 0 is,   0 < |𝑥 − 0| < 𝛿 does not imply |𝑥2 − 4| < 𝜖. 

Choose 𝜖 = 1.    (We want 𝜖 to be less than |actual limit-value of function|) 

 

 

 

 

 

 

We need to show that no matter how small 𝛿 > 0 is,   0 < |𝑥 − 0| < 𝛿 does not 

imply |𝑥2 − 4| < 1  ie, |𝑥2 − 4| ≥ 1, for at least one 𝑥 with 0 < |𝑥| < 𝛿. 

 

Notice that by the triangle inequality:   |−4| ≤ |𝑥2 − 4| + |−𝑥2| 

Since:  |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|;   let 𝑎 = 𝑥2 − 4,    𝑏 = −𝑥2,   𝑎 + 𝑏 = −4.  

 

This inequality is the same as:   4 ≤ |𝑥2 − 4| + |𝑥2|                                                      

               or                          4 − 𝑥2 ≤ |𝑥2 − 4|.  

 

If 𝛿 ≤ 1 then |𝑥 − 0| = |𝑥| < 𝛿 ≤ 1  and thus |𝑥2| = 𝑥2 < 1;   So we have: 

3 < 4 − 𝑥2 ≤ |𝑥2 − 4|. 

  

And since 𝜖 = 1:         𝜖 = 1 < 3 < 4 − 𝑥2 ≤ |𝑥2 − 4|.  

 

𝑦 = 𝑓(𝑥) 

5 

4 

3 
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So if 𝛿 ≤ 1 every 𝑥 where 0 < |𝑥| < 𝛿, has |𝑥2 − 4| > 𝜖 = 1.  

 

If 𝛿 > 1 then {𝑥| |𝑥| < 1} is contained in the set of 𝑥,  where 0 < |𝑥| < 𝛿.  

Thus the set points where 𝛿 > 1 contains points where |𝑥2 − 4| > 𝜖 = 1. 

So 𝑓(𝑥) is discontinuous at 𝑥 = 0. 

 

b.  We need to show we can find an open set 𝑈 ⊆ ℝ such that 𝑓−1(𝑈) is not 

open. 

We want to choose the set 𝑈 so that it includes the “jump” value (in this case 

 𝑓(0) = 4) but not the point 0 = lim
𝑥→0

𝑓(𝑥).  Let’s take 𝑈 = (3,5), for example. 

𝑓−1(𝑈) = {𝑥| 3 < 𝑓(𝑥) < 5}=  {𝑥| 3 < 𝑥2 < 5, 𝑥 ≠ 0} ∪ {0}   

𝑓−1(𝑈) = {√3 < 𝑥 < √5}  ∪ {−√5 < 𝑥 < −√3} ∪ {0}   

 
 

 𝑓−1(𝑈) is not open because {0} is not an interior point of 𝑓−1(𝑈)   (for example, 

there is no neighborhood of {0} that lies totally inside of 𝑓−1(𝑈) ). 

5 

4 

3 

𝑦 = 5 

𝑦 = 3 

(       ) 

−√5      −√3 

(        ) 

√3         √5 
0 
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c.  We need to find a closed set 𝑊 ⊆ ℝ such that 𝑓−1(𝑊) is not closed. 

Let 𝑊 = [−1, 1].  Then 𝑓−1(𝑊) = [−1, 0) ∪ (0, 1] which is not closed in ℝ. 

 

 

      

 

 

 

 

 

 

Ex.  Prove using a 𝛿, 𝜖 argument that  𝑓(𝑥) = 𝑥𝑠𝑖𝑛(
1

𝑥
)      𝑥 ≠ 0 

                                                                       = 0                 𝑥 = 0 

     is continuous at 𝑥 = 0. 

 

 

 

 

 

 

 

𝑦 = 1 

𝑦 = −1 
−1 0 1 

𝑦 = 𝑓(𝑥) 
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We must show that given any 𝜖 > 0 there exists a 𝛿 > 0 such that if |𝑥 − 0| < 𝛿 

then  |𝑓(𝑥) − 0| < 𝜖;   i.e., if |𝑥| < 𝛿 then  |𝑓(𝑥)| < 𝜖. 

We only need to worry about where 𝑓(𝑥) = 𝑥𝑠𝑖𝑛(
1

𝑥
) since at 𝑥 = 0, |𝑓(0)| < 𝜖. 

 

Let’s start with the 𝜖 statement: 

|𝑥𝑠𝑖𝑛(
1

𝑥
)| = |𝑥||𝑠𝑖𝑛(

1

𝑥
)| ≤ |𝑥| < 𝛿    (since |sin(𝑏)| ≤ 1 for all 𝑏 ∈ ℝ) 

 

Let 𝛿 = 𝜖. 

Then |𝑥| < 𝛿       implies that: 

|𝑥𝑠𝑖𝑛(
1

𝑥
)−0| = |𝑥𝑠𝑖𝑛(

1

𝑥
)| = |𝑥||𝑠𝑖𝑛(

1

𝑥
)| ≤ |𝑥| < 𝛿 = 𝜖.    

     

So if |𝑥 − 0| < 𝛿 then  |𝑓(𝑥) − 0| < 𝜖. 

Hence lim
𝑥→0

𝑓(𝑥) = 𝑓(0)   and 𝑓(𝑥) is continuous at 𝑥 = 0.       
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Ex.  Let    𝑓(𝑥) = 𝑥𝑠𝑖𝑛(
1

𝑥
)      𝑥 ≠ 0 

                         = 1                 𝑥 = 0.      

     Prove that 𝑓(𝑥)  is discontinuous at  𝑥 = 0,  using a 𝛿, 𝜖 argument. 

 

     We need to show that there exists an 𝜖 > 0 such that no matter how small 

𝛿 > 0 is,   0 < |𝑥 − 0| < 𝛿 does not imply |𝑥𝑠𝑖𝑛(
1

𝑥
) − 1| < 𝜖 .          

Choose 𝜖 = 1/2    (𝜖 =
1

2
 is less than |actual limit-value of function|) 

 

 

  We need to show that no matter how small 𝛿 > 0 is,   0 < |𝑥 − 0| < 𝛿 does 

not imply |𝑥𝑠𝑖𝑛(
1

𝑥
) − 1| <

1

2
  i.e., |𝑥𝑠𝑖𝑛(

1

𝑥
) − 1| ≥

1

2
 , for at least one 𝑥 with 

|𝑥| < 𝛿. 

In fact, we’ll show that |𝑥𝑠𝑖𝑛(
1

𝑥
) − 1| ≥

1

2
 for all 𝑥 with 0 < |𝑥| < 𝛿, for a 

given 𝛿. 

𝑦 = 𝑓(𝑥) 
1 

𝑦 = 1.5 

𝑦 = 0.5 

1.5 

0.5 

(  )  

−0.5 0.5 
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By the triangle inequality we have: 

|−1| ≤ |𝑥𝑠𝑖𝑛 (
1

𝑥
) − 1| + | − 𝑥𝑠𝑖𝑛 (

1

𝑥
) |  

Since:  |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|;                                                                                                 

𝑎 = 𝑥𝑠𝑖𝑛 (
1

𝑥
) − 1,   𝑏 = −𝑥𝑠𝑖𝑛 (

1

𝑥
),   𝑎 + 𝑏 = −1. 

 

1 ≤ |𝑥𝑠𝑖𝑛 (
1

𝑥
) − 1| + |𝑥𝑠𝑖𝑛 (

1

𝑥
) |  

1 − |𝑥𝑠𝑖𝑛 (
1

𝑥
) |  ≤ |𝑥𝑠𝑖𝑛 (

1

𝑥
) − 1|  

 

Assume  𝛿 ≤
1

2
 ;    then  |𝑥𝑠𝑖𝑛 (

1

𝑥
)| ≤ |x| <

1

2
 . 

This means that for |x| <
1

2
:    

𝜖 =
1

2
< 1 − |𝑥𝑠𝑖𝑛 (

1

𝑥
) |  ≤ |𝑥𝑠𝑖𝑛 (

1

𝑥
) − 1|.  

 

If 𝛿 >
1

2
 , then {𝑥| |𝑥| <

1

2
} is contained in the set of 𝑥,  where |𝑥| < 𝛿.  Thus 

the set points where 𝛿 >
1

2
 contains points where |𝑥𝑠𝑖𝑛(

1

𝑥
) − 1| > 𝜖 =

1

2
 . 

So 𝑓(𝑥) is discontinuous at 𝑥 = 0. 
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Theorem:  Let 𝑓 and 𝑔 be continuous functions from a metric space 𝑋 into ℝ (or 

the complex numbers).  Then 𝑓 + 𝑔, 𝑓𝑔,
𝑓
𝑔

 𝑎𝑛𝑑 (𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥) ≠ 0) are 

continuous on 𝑋.         

 

Proof:   At any isolated point 𝑝𝜖𝑋, we know we can find a neighborhood of 𝑝 that 

does not intersect 𝑋 in any other point than 𝑝. 

Thus there exists a 𝛿 > 0 such that if 𝑑(𝑝, 𝑥) < 𝛿 then 𝑥 = 𝑝.  Hence for that 

𝛿, |ℎ(𝑥) − ℎ(𝑝)| = |ℎ(𝑝) − ℎ(𝑝)| = 0 < 𝜖   (here ℎ represents any of  

𝑓 + 𝑔, 𝑓𝑔, 𝑎𝑛𝑑 
𝑓

𝑔
 (𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥) ≠ 0)). 

 

At a limit point of 𝑝𝜖𝑋 since 𝑓 and 𝑔 are continuous we have: 

lim
𝑥→𝑝

𝑓(𝑥) = 𝑓(𝑝)      and     lim
𝑥→𝑝

𝑔(𝑥) = 𝑔(𝑝). 

 

By an earlier limit theorem we have: 

lim
𝑥→𝑝

(𝑓(𝑥) + 𝑔(𝑥)) = 𝑓(𝑝) + 𝑔(𝑝)       

lim
𝑥→𝑝

𝑓(𝑥)𝑔(𝑥) = 𝑓(𝑝)𝑔(𝑝)       

lim
𝑥→𝑝

𝑓(𝑥)

𝑔(𝑥)
=

𝑓(𝑝)

𝑔(𝑝)
 ;   𝑔(𝑥) ≠ 0;    𝑔(𝑝) ≠ 0.      

 

Since 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are continuous functions, the above 

theorem implies that all polynomials and rational functions where the 

denominator is non-zero are continuous. 
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Theorem:  a.   Let 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘(𝑥)  be real valued functions on a 

metric space 𝑋, and let 𝑓 be a mapping of 𝑋 → ℝ𝑘  by                                         

𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘(𝑥)); 𝑥𝜖𝑋 then 𝑓 is continuous if and only 

if each 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑘(𝑥) is continuous. 

                  b.  If 𝑓, 𝑔: 𝑋 → ℝ𝑘 are continuous, then 𝑓 + 𝑔 and 𝑓 ∙ 𝑔  are 

continuous.  

 

Proof:  a.  Assume 𝑓: 𝑋 → ℝ𝑘 is continuous at 𝑥 = 𝑝  and show                                     

𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛 are continuous at 𝑥 = 𝑝. 

So for all 𝜖 > 0 there exists a 𝛿 > 0 such that if 𝑑(𝑥, 𝑝) < 𝛿  then 

𝑑(𝑓(𝑥), 𝑓(𝑝)) < 𝜖.  That is: 

                                                                (∑ (𝑓𝑖(𝑥) − 𝑓𝑖(𝑝))
2

)𝑛
𝑖=1

1

2
< 𝜖 .   

However, notice that 

                  |𝑓𝑖(𝑥) − 𝑓𝑖(𝑝)| ≤ (∑ (𝑓𝑖(𝑥) − 𝑓𝑖(𝑝))
2

)𝑛
𝑖=1

1

2
< 𝜖 . 

 

So the same 𝛿 that forces 𝑑(𝑓(𝑥), 𝑓(𝑝)) < 𝜖 will force 𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑝)) < 𝜖, 

Thus 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛 are continuous at 𝑥 = 𝑝. 

 

 

 

 

 

 



18 
 

 

Now assume 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛 are continuous and show 𝑓(𝑥) is continuous.  

So for all 𝜖 > 0 there exists a 𝛿𝑖 > 0 such that if 𝑑(𝑥, 𝑝) < 𝛿𝑖  then 

𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑝)) < 𝜖/𝑛.   

 

Choose 𝛿 = min(𝛿1, … , 𝛿𝑛) and notice that: 

(∑ (𝑓𝑖(𝑥) − 𝑓𝑖(𝑝))
2

)𝑛
𝑖=1

1

2
≤ ∑ |𝑓𝑖(𝑥) − 𝑓𝑖(𝑝)| < 𝑛 (

𝜖

𝑛
) = 𝜖𝑛

𝑖=1 .  

Thus 𝑓(𝑥) is continuous at 𝑥 = 𝑝.      

 

 

 

 b.  Follows from part a and the continuity theorem on page 16. 


