Continuity

Def. Suppose X and Y are metric spaces, $E \subseteq X$, $p \in E$, and $f : E \to Y$. Then f is said to be **Continuous at p** if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for all points $x \epsilon E$, if $d_X(x,p) < \delta$ then $d_Y(f(x),f(p)) < \epsilon$. Equivalently, we can say that f is **Continuous at** p if $\lim_{x\to p} f(x) = f(p)$.

If $X = Y = \mathbb{R}$ then $f(x)$ is **Continuous at** $x = c$ means for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - c| < \delta$ then $|f(x) - f(c)| < \epsilon$.

Def. If f is Continuous at every point of E , then f is said to be **Continuous on** E .

Note: For $\lim_{x\to p} f(x)$ to exist, $f(p)$ does not need to be defined (although it can be). For $f(x)$ to be continuous at $p \in E$, $f(p)$ must be defined and equal to $\lim_{x\to p} f(x)$.

If $p \in E$ is an isolated point (i.e., there exists a neighborhood of p, $N(p) \subseteq X$, such that $N(p) \cap E = \{p\}$ then every function that has p in its domain is continuous at $p\epsilon E$. We can see this by choosing $\delta > 0$ such that $d_X(x,p) < \delta$ implies $x = p$.

Then $d_Y(f(x), f(p)) = 0 < \epsilon$.

Ex. Let $E = [-1,1] \cup \{5\} \subseteq \mathbb{R}$; and $f : E \to \mathbb{R}$ is any function. Show that f is continuous at $x = 5$.

Given any $\epsilon > 0$, if $\delta < 3$, for example, and $x \in E$, then $d(x, 5) < 3$ implies that $x = 5$, and thus $|f(x) - f(5)| = |f(5) - f(5)| = 0 < \epsilon$.

Thus f is continuous at $x = 5$.

Theorem: Suppose X, Y, Z are metric spaces with $E \subseteq X$, $f: E \to Y$ and $g: f(E) \to Z$. Let $h: E \to Z$ by $h(x) = g(f(x))$ for $x \in E$. If f is continuous at $p \in E$ and if g is continuous at $f(p) \in Y$, then h is continuous at $p \in E$.

Proof: We must show that given any $\epsilon > 0$ there exists a $\delta > 0$ such that for all points $x \in E$, if $d_X(x, p) < \delta$ then $d_Z(h(x), h(p)) = d_Z(g(f(x)), g(f(p))) < \epsilon$.

Since g is continuous at $f(p)$, we know we can find a $\delta' > 0$ such that if $d_Y(y, f(p)) < \delta'$ then $d_Z(g(y), g(f(p))) < \epsilon$.

Since f is continuous at $p \in E$, we know we can find a $\delta > 0$ such that if $d_X(x, p) < \delta$ then $d_Y\big(f(x), f(p)\big) < \delta'$ for all $x {\in} E.$

But this means that if $d_X(x,p) < \delta$ then $d_Y\big(f(x),f(p)\big) < \delta'$ for all $x \epsilon E$, which in turn means that $d_Z(g(f(x)), g(f(p))) < \epsilon$.

Hence we have shown that $h(x) = g(f(x))$ is continuous at $x = p$.

Theorem: A mapping $f: X \to Y$, X, Y metric spaces is continuous if and only if $f^{-1}(V)$ is open in X for every open set $V \subseteq Y.$

Proof: First assume f is continuous on X and show that $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$.

Let V be any open subset of Y. We have to show that every point p in $f^{-1}(V)$ is an interior point of $f^{-1}(V)$.

Suppose $\mathit{pef}^{-1}(V)$. Since V is open, there exists an $\epsilon > 0$ such that if $d_Y(f(p), y) < \epsilon$ then $y \epsilon V$ (this just says that since V is open, we can find a neighborhood of $f(p)$ that lies entirely inside V).

Since f is continuous at p , there exists a $\delta > 0$ such that if $d_X(x,p) < \delta$ then $d_Y(f(x), f(p)) < \epsilon$, thus $x \epsilon f^{-1}(V)$.

Thus p is an interior point of $f^{-1}(V)$, and $f^{-1}(V)$ is open.

Now let's assume that $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$ and prove that f is a continuous function on X .

Fix a $p \in X$ and choose any $\epsilon > 0$.

We need to show that we can find a $\delta > 0$ such that if $d_X(x,p) < \delta$ then $d_Y(f(x), f(p)) < \epsilon.$

Let V be the set of all $y \in Y$ such that $d_Y(y, f(p)) < \epsilon$.

 V is an open set in Y (since it's a neighborhood of a point) and hence, by assumption, $f^{-1}(V)$ is open in X .

Since $f^{-1}(V)$ is open there exists a $\delta > 0$ such that if $d_X(x, p) < \delta$ then $x \in f^{-1}(V)$. But if $x \epsilon f^{-1}(V)$ then $f(x) \epsilon V$ which means that $d_Y(f(x), f(p)) < \epsilon$.

Hence f is continuous at $p \in X$ for every p.

Thus f is continuous on X .

Cor. A mapping $f: X \to Y$, X, Y metric spaces is continuous if and only if $f^{-1}(V)$ is closed in X for every closed set $V \subseteq Y$.

Proof: If V is closed then V^c is open. Thus by the theorem f is continuous if and only if $f^{-1}(V^c)$ is open. The corollary follows from the fact that $f^{-1}(V^c) = (f^{-1}(V))^c$.

Note: If $f: X \to Y$ is continuous on X, it does NOT imply that:

- 1. if $V \subseteq X$ is open then $f(V) \subseteq Y$ is open
- 2. If $W \subseteq X$ is closed then $f(W) \subseteq Y$ is closed.

Ex. Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ is continuous at every point (we will show this shortly) in ℝ. However, if $V = (-2, 2)$, which is open in ℝ, then $f(V) = [0,4)$ which is not open in R.

Ex. Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{1+x}$ $\frac{1}{1+x^2}$ is continuous at every point in $\mathbb R$. However, if $W = [0, \infty)$, which is closed in ℝ, then $f(W) = (0,1]$ which is not closed in ℝ.

Ex. Prove that $f(x) = x^2$ is continuous at $x = 0$ and $x = a$.

To prove that $f(x) = x^2$ is continuous at $x = 0$ we must show that given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - 0| < \delta$ then $|x^2 - 0| < \epsilon$, i.e. we must prove that \lim_{Ω} $x\rightarrow 0$ $x^2 = 0.$

Let's start with the ϵ statement and work backwards to the δ statement.

$$
|x^2 - 0| = |x|^2 < \epsilon \quad \text{or} \quad |x| < \sqrt{\epsilon}.
$$

Now choose $\delta = \sqrt{\epsilon}$.

 $x\rightarrow 0$

Now let's show that this δ works.

If $|x-0|=|x|<\delta=\sqrt{\epsilon}$ then $|x^2 - 0| = |x|^2 < \epsilon$ Hence lim $x^2 = 0$, and $f(x) = x^2$ is continuous at $x = 0$. To prove that $f(x) = x^2$ is continuous at $x = a$ we must show that given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$ then $\ |x^2 - a^2| < \epsilon$, i.e. we must prove that lim $x \rightarrow a$ $x^2 = a^2$.

Let's start with the ϵ statement and work backwards the δ statement.

$$
|x2 - a2| = |(x + a)(x - a)| = |x + a||x - a|
$$

 $|x - a|$ is part of the δ statement, the question is how big can $|x + a|$ be?

Let's choose $\delta \leq 1$. That means: $|x - a| < 1$ or equivalently: $-1 < x - a < 1$ $a-1 < x < a+1$; now add "a" to the entire inequality: $2a - 1 < x + a < 2a + 1$ $-2|a| - 1 \leq 2a - 1 < x + a < 2a + 1 \leq 2|a| + 1$ so $|x + a| < 2|a| + 1.$

This now means that:

$$
|x^2 - a^2| = |x + a||x - a| < (2|a| + 1)|x - a|.
$$

So if we can ensure that $(2|a| + 1)|x - a| < \epsilon$ or equivalently: $|x - a|$ < ϵ $\frac{c}{2|a|+1}$

we'll be in business.

So just let $\delta = \min(1, \frac{\epsilon}{2|\alpha|})$ $2|a|+1$ (notice that δ depends on both "a" and ϵ).

Now let's show that this δ works:

Given that $|x - a| < \delta$ we know that : $|x^2 - a^2| = |x + a||x - a| \leq (2|a| + 1)|x - a|$ (since $\delta \leq 1$) $\langle 2|a| + 1 \rangle \delta$ $\leq (2|a|+1)(\frac{\epsilon}{2|a|})$ $2|a|+1$ ϵ (since $\delta \leq \frac{\epsilon}{2|\alpha|}$) $\frac{c}{2|a|+1}$).

Hence lim $x \rightarrow a$ $x^2=a^2$, and $f(x)=x^2$ is continuous at $x=a.$

Ex. Let
$$
f(x) = x^2
$$
 if $x \neq 0$
= 4 if $x = 0$.

a. Using a δ , ϵ argument prove that $f(x)$ is discontinuous at $x = 0$ (i.e. prove that lim $x\rightarrow 0$ $f(x) \neq f(0) = 4.$

b. Prove that $f(x)$ is not continuous on $\mathbb R$ by finding an open set U such that $f^{-1}(U)$ is not open.

c. Prove that $f(x)$ is not continuous on $\mathbb R$ by finding an closed set W such that $f^{-1}(W)$ is not closed.

a. We need to show that there exists an $\epsilon > 0$ such that no matter how small $\delta > 0$ is, $0 < |x - 0| < \delta$ does not imply $|x^2 - 4| < \epsilon$.

Choose $\epsilon = 1$. (We want ϵ to be less than | actual limit-value of function|)

We need to show that no matter how small $\delta > 0$ is, $0 < |x - 0| < \delta$ does not imply $|x^2-4| < 1\,$ ie, $|x^2-4|\geq 1$, for at least one x with $0<|x|<\delta.$

Notice that by the triangle inequality: $|-4| \le |x^2 - 4| + |-x^2|$ Since: $|a + b| \le |a| + |b|$; let $a = x^2 - 4$, $b = -x^2$, $a + b = -4$.

This inequality is the same as: $4 \le |x^2 - 4| + |x^2|$ or $4 - x^2 \le |x^2 - 4|$.

If $\delta \leq 1$ then $|x-0|=|x|<\delta \leq 1\,$ and thus $|x^2|=x^2<1; \,$ So we have: $3 < 4 - x^2 \le |x^2 - 4|$.

And since $\epsilon = 1$: $\epsilon = 1 < 3 < 4 - x^2 \le |x^2 - 4|$.

So if $\delta \leq 1$ every x where $0 < |x| < \delta$, has $|x^2 - 4| > \epsilon = 1$.

If $\delta > 1$ then $\{x \mid |x| < 1\}$ is contained in the set of x, where $0 < |x| < \delta$. Thus the set points where $\delta > 1$ contains points where $|x^2 - 4| > \epsilon = 1.$ So $f(x)$ is discontinuous at $x = 0$.

b. We need to show we can find an open set $U \subseteq \mathbb{R}$ such that $f^{-1}(U)$ is not open.

We want to choose the set U so that it includes the "jump" value (in this case $f(0) = 4$) but not the point $0 = \lim_{x\to 0} f(x)$. Let's take $U = (3,5)$, for example. $f^{-1}(U) = \{x \mid 3 < f(x) < 5\} = \{x \mid 3 < x^2 < 5, x \neq 0\} \cup \{0\}$ $f^{-1}(U) = \{\sqrt{3} < x < \sqrt{5}\}$ ∪ $\{-\sqrt{5} < x < -\sqrt{3}\}$ ∪ {0} 5 4 3 $y = 5$ $y = 3$ $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $-\sqrt{5}$ $-\sqrt{3}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\sqrt{3}$ $\sqrt{5}$ $\overline{0}$

 $f^{-1}(U)$ is not open because $\{0\}$ is not an interior point of $f^{-1}(U)$ (for example, there is no neighborhood of $\{0\}$ that lies totally inside of $f^{-1}(U)$).

c. We need to find a closed set $W \subseteq \mathbb{R}$ such that $f^{-1}(W)$ is not closed.

Let $W = [-1,1].$ Then $f^{-1}(W) = [-1,0) \cup (0,1]$ which is not closed in $\R.$

Ex. Prove using a δ , ϵ argument that $f(x) = x sin(\frac{1}{x})$ χ $x \neq 0$

We must show that given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - 0| < \delta$ then $|f(x) - 0| < \epsilon$; i.e., if $|x| < \delta$ then $|f(x)| < \epsilon$.

We only need to worry about where $f(x) = x sin(\frac{1}{x})$ $\frac{1}{x}$) since at $x = 0$, $|f(0)| < \epsilon$.

Let's start with the ϵ statement:

$$
|x\sin(\frac{1}{x})| = |x||\sin(\frac{1}{x})| \le |x| < \delta \quad \text{(since } |\sin(b)| \le 1 \text{ for all } b \in \mathbb{R}\text{)}
$$

Let $\delta = \epsilon$.

Then $|x| < \delta$ implies that:

$$
|x\sin(\frac{1}{x})-0|=|x\sin(\frac{1}{x})|=|x||\sin(\frac{1}{x})|\leq |x|<\delta=\epsilon.
$$

So if $|x - 0| < \delta$ then $|f(x) - 0| < \epsilon$. Hence lim $x\rightarrow 0$ $f(x) = f(0)$ and $f(x)$ is continuous at $x = 0$. Ex. Let $f(x) = x sin(\frac{1}{x})$ \mathcal{X} $x \neq 0$

 $= 1$ $x = 0.$

Prove that $f(x)$ is discontinuous at $x = 0$, using a δ , ϵ argument.

We need to show that there exists an $\epsilon > 0$ such that no matter how small $\delta > 0$ is, $0 < |x - 0| < \delta$ does not imply $\left| x sin(\frac{1}{n}) \right|$ $\left|\frac{1}{x}\right| - 1 \leq \epsilon$.

Choose $\epsilon = 1/2$ $(\epsilon = \frac{1}{2})$ $\frac{1}{2}$ is less than |actual limit-value of function|)

We need to show that no matter how small $\delta > 0$ is, $0 < |x - 0| < \delta$ does not imply $\left| x sin(\frac{1}{x}) \right|$ $\left|\frac{1}{x}\right| - 1 \leq \frac{1}{2}$ $\frac{1}{2}$ i.e., $\Big| x sin(\frac{1}{x}) \Big|$ $\left|\frac{1}{x}\right| - 1 \leq \frac{1}{2}$ $\frac{1}{2}$, for at least one *x* with $|x| < \delta$.

In fact, we'll show that $\sqrt{x}sin(\frac{1}{x})$ $\left|\frac{1}{x}\right| - 1 \leq \frac{1}{2}$ $\frac{1}{2}$ for all x with $0 < |x| < \delta$, for a given δ .

By the triangle inequality we have:

$$
|-1| \le \left| x \sin\left(\frac{1}{x}\right) - 1 \right| + |-x \sin\left(\frac{1}{x}\right)|
$$

Since: $|a + b| \le |a| + |b|$;

$$
a = x \sin\left(\frac{1}{x}\right) - 1, \quad b = -x \sin\left(\frac{1}{x}\right), \quad a + b = -1.
$$

$$
1 \le \left| x \sin\left(\frac{1}{x}\right) - 1 \right| + \left| x \sin\left(\frac{1}{x}\right) \right|
$$

$$
1 - \left| x \sin\left(\frac{1}{x}\right) \right| \le \left| x \sin\left(\frac{1}{x}\right) - 1 \right|
$$

Assume $\delta \leq \frac{1}{2}$ $\frac{1}{2}$; then $\Big| x sin\Big(\frac{1}{x}\Big)$ $\left|\frac{1}{x}\right| \leq |x| < \frac{1}{2}$ $\frac{1}{2}$. This means that for $|x| < \frac{1}{2}$ $\frac{1}{2}$: $\epsilon = \frac{1}{2}$ $\frac{1}{2}$ < 1 – | xsin $\left(\frac{1}{x}\right)$ $\left|\frac{1}{x}\right| \leq \left| x \sin \left(\frac{1}{x}\right) \right|$ $(\frac{1}{x})-1$.

If $\delta > \frac{1}{2}$ $\frac{1}{2}$, then $\left\{ x\right\} |x| < \frac{1}{2}$ $\frac{1}{2}$ } is contained in the set of *x*, where $|x| < \delta$. Thus the set points where $\delta > \frac{1}{2}$ $\frac{1}{2}$ contains points where $\Big| x sin(\frac{1}{x}) \Big|$ $\left| \frac{1}{x} \right| - 1 \leq \epsilon = \frac{1}{2}$ $\frac{1}{2}$. So $f(x)$ is discontinuous at $x = 0$.

Theorem: Let f and g be continuous functions from a metric space X into $\mathbb R$ (or the complex numbers). Then $f + g$, fg , $\frac{f}{g}$ $\frac{f}{g}$ and (where $g(x) \neq 0$) are continuous on X .

Proof: At any isolated point $p \in X$, we know we can find a neighborhood of p that does not intersect X in any other point than p .

Thus there exists a $\delta > 0$ such that if $d(p, x) < \delta$ then $x = p$. Hence for that δ , $|h(x) - h(p)| = |h(p) - h(p)| = 0 < \epsilon$ (here h represents any of $f + g$, fg, and $\frac{f}{g}$ (where $g(x) \neq 0$)).

At a limit point of $p \in X$ since f and g are continuous we have:

lim $x \rightarrow p$ $f(x) = f(p)$ and \lim $x \rightarrow p$ $g(x) = g(p).$

By an earlier limit theorem we have:

$$
\lim_{x \to p} (f(x) + g(x)) = f(p) + g(p)
$$

\n
$$
\lim_{x \to p} f(x)g(x) = f(p)g(p)
$$

\n
$$
\lim_{x \to p} \frac{f(x)}{g(x)} = \frac{f(p)}{g(p)}; \ g(x) \neq 0; \ g(p) \neq 0.
$$

Since $f(x) = x$ and $f(x) = constant$ are continuous functions, the above theorem implies that all polynomials and rational functions where the denominator is non-zero are continuous.

Theorem: a. Let $f_1(x)$, $f_2(x)$, $f_3(x)$, ... , $f_k(x)$ be real valued functions on a metric space X, and let f be a mapping of $X \to \mathbb{R}^k$ by $f(x) = (f_1(x), f_2(x), f_3(x), ..., f_k(x))$; $x \in X$ then f is continuous if and only if each $f_1(x)$, $f_2(x)$, $f_3(x)$, \dots , $f_k(x)$ is continuous.

b. If f , $g\colon X\to \mathbb{R}^k$ are continuous, then $f+g$ and $f\cdot g\,$ are continuous.

Proof: a. Assume $f\!:\!X\to\mathbb{R}^k$ is continuous at $x=p\,$ and show $f_i(x)$, $i=1,...$, n are continuous at $x=p.$

So for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $d(x, p) < \delta$ then $d(f(x), f(p)) < \epsilon$. That is:

$$
\left(\sum_{i=1}^n (f_i(x) - f_i(p))^2\right)^{\frac{1}{2}} < \epsilon.
$$

However, notice that

$$
|f_i(x) - f_i(p)| \leq (\sum_{i=1}^n (f_i(x) - f_i(p))^2)^{\frac{1}{2}} < \epsilon.
$$

So the same δ that forces $d\big(f(x),f(p)\big)<\epsilon$ will force $d\big(f_i(x),f_i(p)\big)<\epsilon$, Thus $f_{\widetilde t}(x)$, $i=1,...$, n are continuous at $x=p.$

Now assume $f_i(x)$, $i=1,...,n$ are continuous and show $f(x)$ is continuous. So for all $\epsilon > 0$ there exists a $\delta_i > 0$ such that if $d(x,p) < \delta_i\,$ then $d(f_i(x), f_i(p)) < \epsilon/n$.

Choose $\delta = \min(\delta_1, ..., \delta_n)$ and notice that:

$$
\left(\sum_{i=1}^n \bigl(f_i(x) - f_i(p)\bigr)^2\right)^{\frac{1}{2}} \le \sum_{i=1}^n |f_i(x) - f_i(p)| < n\left(\frac{\epsilon}{n}\right) = \epsilon.
$$

Thus $f(x)$ is continuous at $x = p$.

b. Follows from part a and the continuity theorem on page 16.