Continuity

Def. Suppose X and Y are metric spaces, E € X, peE, and f:E =Y. Then f is

said to be Continuous at p if for every € > 0 there exists a § > 0 such that for all
points xeE, if dy(x,p) < 6 then dy(f(x), f(p)) < €. Equivalently, we can say
that f is Continuous at p if lim f(x) = f(p).
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If X =Y = Rthen f(x) is Continuous at x = ¢ means for every € > 0 there
exists a § > 0 such thatif |[x — c| < § then |[f(x) — f(c)| < e.
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Def. If f is Continuous at every point of E, then f is said to be Continuous on E.

Note: For lim f(x) to exist, f(p) does not need to be defined (although it can
X-p

be). For f(x) to be continuous at peE, f(p) must be defined and equal to

lim f(x).
xX—p

If peE is an isolated point (i.e., there exists a neighborhood of p, N(p) € X, such
that N(p) N E = {p}) then every function that has p in its domain is continuous
at peE. We can see this by choosing § > 0 such that dy(x,p) < § implies x = p.

Then dy (f(x), f(p)) =0 <.

Ex. Let E = [-1,1]U {5} € R; and f:E — Ris any function. Show that f is
continuous at x = 5.

Givenany € > 0, if 6§ < 3, for example, and x € E, then d(x,5) < 3 implies
thatx = 5,and thus |[f(x) — f(5)| = |f(5) — f(5)| =0 < e.

Thus f is continuous at x = 5.



Theorem: Suppose X, Y, Z are metric spaces with E € X, f: E = Y and
g:f(E) > Z. Leth:E — Z by h(x) = g(f(x)) for xeE. If f is continuous at peE
and if g is continuous at f(p)€Y, then h is continuous at peE.

Proof: We must show that given any € > 0 there exists a & > 0 such that for all
points xeE, if dy(x,p) < 6 then d;(h(x),h(p)) = d;(g(f (x)),g(f(p))) < e.

gWNs (f(p))
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Since g is continuous at f(p), we know we can find a §' > 0 such that if
dy(y, f()) < &' then dz(g(»), g(f ())) < e.

Since f is continuous at peE, we know we can find a § > 0 such that if

dx(x,p) < & thendy(f(x),f(p)) < & forall xeE.

But this means that if dy(x, p) < & then dy (f (x), f(p)) < &' for all xeE, which
in turn means that d, (g(f(x)),g(f(p))) < e.

Hence we have shown that h(x) = g(f(x)) is continuous at x = p.

Theorem: A mapping f: X = Y, X,Y metric spaces is continuous if and only if
f~Y(V) is openin X for every opensetV S Y.

Proof: First assume f is continuous on X and show that f~1(V) is open in X for

everyopensetV C Y.




Let V be any open subset of Y. We have to show that every point p in f~1(V) is
an interior point of f~1(V).

Suppose pef ~1(V). Since V is open, there exists an € > 0 such that if
dy(f(p),y) < ethen yel (thisjust says thatsince V is open, we can find a
neighborhood of f(p) that lies entirely inside V).

Since f is continuous at p, there exists a § > 0 such that if dx(x,p) < § then

dy(f(x), f()) < €, thus xef~1(V).

Thus p is an interior point of f~1(V), and f~1(V) is open.

Now let’s assume that f~1(V) is open in X for every open set V € Y and prove
that f is a continuous function on X.

Fix a peX and choose any € > 0.

Ns(p) = Ne(f(p) |

-

We need to show that we can finda § > 0 such that if dy(x,p) < & then

dy(f(x), f(p)) < €.
Let V be the set of all yeY such that dy (y, f(p)) < €.

IV isan opensetinY (since it’s a neighborhood of a point) and hence, by
assumption, f~1(V)is openin X.



Since f~1(V) is open there exists a § > 0 such that if dx(x,p) < & then x € f~1(V).
But if xef ~1(V) then f(x)eV which means that dy (f(x), f(p)) < €.
Hence f is continuous at peX for every p.

Thus f is continuous on X.

Cor. A mapping f:X = Y, X,Y metric spaces is continuous if and only if f~1(V)
is closed in X for every closedsetV C Y.

Proof: If IV is closed then V¢ is open. Thus by the theorem f is continuous if and
only if f~1(V¢) is open. The corollary follows from the fact that

Fre) = (F1on)”.

(Fr) = 1o

Note: If f: X — Y is continuous on X, it does NOT imply that:

1. ifV € Xisopenthen f(V) € Y is open
2. IfW < Xisclosed then f(W) € Y is closed.

Ex. Let f:R - R by f(x) = x? is continuous at every point (we will show this
shortly) in R. However, if V = (=2, 2), which isopen in R, then f(V) = [0,4)
which is not open in R.



Ex. Let f:R - Rby f(x) = a7
W = [0, ), which is closed in R, then f(W) = (0,1] which is not closed in R.

is continuous at every point in R. However, if

Ex. Prove that f(x) = x? is continuous at x = 0 and x = a.

To prove that f(x) = x? is continuous at x = 0 we must show that given any
€ > 0 there exists a 8 > 0 such thatif |[x — 0] < & then |x? — 0| < €,

i.e. we must prove that lim x? = 0.
x-0

Let’s start with the € statement and work backwards to the & statement.

|x2 — 0] = |x|? <€ or |x| <+e.

Now choose § = +/E.

Now let’s show that this 6 works.
Iflx — 0| = [x] <8 =+e then
|x2 —0| = |x|* <€

Hence lincl) x2 =0, and f(x) = x? is continuous at x = 0.
X—



To prove thatf(x) = x? is continuous at x = a we must show that given any
€ > 0 there exists a 8 > 0 such thatif |[x — a|] < & then |x? — a?| <,

i.e. we must prove that lim x? = a?.

xX—a

Let’s start with the € statement and work backwards the § statement.
|x? —a?| = |(x + a)(x —a)| = |x + a]|x — a

|x — a| is part of the & statement, the question is how big can |x + a| be?

Let’s choose § < 1.
That means: lx —al <1 or equivalently:
—-1<x—-—a<l1
a—1<x<a+1; now add“a” tothe entire inequality:
2a—1<x+a<2a+1
—2al—1<2a-1<x+a<2a+1<2al+1 so
|x + a| < 2|a| + 1.
This now means that:

|x? —a?| = |x + al|x — a|] < 2]a] + D|x — a.

So if we can ensure that (2|a| + 1)|x — a| < € or equivalently:

lx —al| <
2|lal+1

we’ll be in business.



So just let § = min(1 ) (notice that & depends on both “a” and ).

"2la |+1

Now let’s show that this & works:

Given that |x — a| < § we know that :

|x?2 —a?| = |x+allx —a| < 2la] + 1D|x — a (since§ < 1)
< (2lal+1)6
< (2|al + 1)(2| I+1 =€ (since § < 2|aT+1)

Hence lim x? = a?, and f(x) = x? is continuous at x = a.
xX—a

Ex. Let f(x) =x% ifx#0

=4 ifx=0.

a. Using a §, € argument prove that f(x) is discontinuous at x = 0 (i.e. prove

that}ci_r)lg)f(x) + f(0) =4.)

b. Prove that f(x) is not continuous on R by finding an open set U such that
f~1(U) is not open.

c. Prove that f(x) is not continuous on R by finding an closed set W such that
f~1(W) is not closed.
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a. We need to show that there exists an € > 0 such that no matter how small
§>0is, 0<]|x—0|<6doesnotimply |x? —4| <e.

Choose € = 1. (We want € to be less than |actual limit-value of function|)

Sy =@

”~

g

<
We need to show that no matter how smalld > Qis, 0 < |x — 0] < § does not

imply |x? — 4| < 1 ie, |x%2 — 4| = 1, for at least one x with 0 < |x| < §.

Notice that by the triangle inequality: |—4| < |x? — 4| + |—x?|

Since: la+ b| < |a| + |b|; leta=x?>—4, b=—x? a+b=—4

This inequality is the same as: 4 < |x% — 4| + |x?|
or 4 —x% < |x* —4|

If§ < 1then|x — 0| = |x] <& <1 andthus |x?| = x% < 1; So we have:

3<4—x?%< |x?—4).

And sincee = 1: e=1<3<4—x?<|x?>—4]|.
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Soif & < 1 every x where 0 < |x| < &, has [x2 — 4| > € = 1.

If & > 1 then {x| |x|] < 1} is contained in the set of x, where 0 < |x]| < §.
Thus the set points where § > 1 contains points where [x% — 4| > € = 1.

So f(x) is discontinuous at x = 0.

b. We need to show we can find an open set U € R such that f~1(U) is not

open.

We want to choose the set U so that it includes the “jump” value (in this case
f(0) = 4) but not the point 0 = }Cirr(l) f(x). Let’'stake U = (3,5), for example.
YU ={x|3< f(x) <5}= {x|3<x?2<5, x#0}u{0}
fHU) ={V3<x <5} u{-V5<x < —V3}uU {0}
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f~1(U) is not open because {0} is not an interior point of f~1(U) (for example,
there is no neighborhood of {0} that lies totally inside of f~1(U) ).
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c. We need to find a closed set W € R such that f~1(W) is not closed.

Let W = [—1,1]. Then f (W) = [—1, 0) U (0, 1] which is not closed in R.

=0 x=0
is continuous at x = 0.
sl t _ Lodobe
el y=f (x), |2
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We must show that given any € > 0 there exists a § > 0 such thatif |[x — 0| < §
then |f(x) — 0] <¢€; e, if|x| < & then |f(X)]| <€

.1
We only need to worry about where f(x) = xsm(;) sinceatx =0, |[f(0)]| < e.

Let’s start with the € statement:

|x5in(§)| = |x||sin(§)| < |x| <& (since|sin(b)| < 1forallb € R)

Letd = €.

Then |x| < &  implies that:

jxsin(2)—-0| = |xsin()| = |x||sin(3)| < |x| < &

Il
m

Soif [x — 0] < §then |[f(x) — 0| <e.

Hence lirr(I) f(x) = f(0) and f(x) is continuous at x = 0.
X—
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Ex. let f(x) = xsin(i) x#0
=1 x = 0.

Prove that f (x) is discontinuous at x = 0, using a §, € argument.

We need to show that there exists an € > 0 such that no matter how small

6 >0is, 0<]x—0]<d doesnotimply xsin(%)—l <eE.

Choosee =1/2 (e = % is less than |actual limit-value of function|)

<) R e & S
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We need to show that no matter how smalld > 0is, 0 < |x — 0] < é does
.1 1 .1 1
not imply |xsm(;) — 1| <3 le, |xsm(;) — 1| = -, for at least one x with

|x| < 6.

.1 1
In fact, we’ll show that |xsm(;) — 1| = —forallx with 0 < |x| < &, fora

given 4.



By the triangle inequality we have:
. 1 . 1
|—1] < |xsm (;) — 1| + | — xsin (;) |

Since: |a + b| < |a| + |b|;
a = xsin G) —1, b= —xsin G), a+b=-1.

1< |xSin G) — 1| + |xsin G) |

1 — |xsin G) | < |xsin G) — 1|

. (1 1
Assume § < =; then |xSln (;)| < |x] < >

N =

1
This means that for |x| < >

€ = % <1-—|xsin (1)| < |xsin G) — 1|.

X

1 1
If & > 5 then {x] |x| < 5} is contained in the set of x, where |x| < §. Thus

1 .1 1
the set points where § > 5 contains points where |xsm(;) -1 >€e= 5

So f(x) is discontinuous at x = 0.
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Theorem: Let f and g be continuous functions from a metric space X into R (or

f

the complex numbers). Then f + g, fg, g and (where g(x) # 0) are

continuous on X.

Proof: At any isolated point peX, we know we can find a neighborhood of p that
does not intersect X in any other point than p.

Thus there exists a § > 0 such thatif d(p, x) < & then x = p. Hence for that
5, |h(x) — h(p)| = |h(p) — h(p)| = 0 < € (here h represents any of

f+g fg and g (where g(x) # 0)).

At a limit point of peX since f and g are continuous we have:

}Cigglgf(x) =f(p) and }Ciglog(x) =g(p).

By an earlier limit theorem we have:

}Cigg(f (x)+g(x) =f(p) +9@)
}Cigzlg f(x)gx) = f(p)g(p)

T _ f®) .
;lcl—rgg(x) g’ g(x) #0; g(p) #0.

Since f(x) = x and f(x) = constant are continuous functions, the above
theorem implies that all polynomials and rational functions where the
denominator is non-zero are continuous.
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Theorem: a. Let f;(x), f2(x), f5(x), ..., fi(x) be real valued functions on a
metric space X, and let f be a mapping of X —» R¥ by

f(x) = (fi(x), fr,(x), f3(x), ..., f,(x)); xeX then f is continuous if and only
if each f1 (%), f2(x), f3(x), ..., fi (x) is continuous.

b. If f, g: X = R¥ are continuous, then f + g and f - g are
continuous.

Proof: a. Assume f:X — R¥ is continuous at x = p and show

fi(x),i =1, ...,n are continuous at X = p.

So for all € > 0 there existsa § > 0 such thatif d(x,p) < § then

d(f(x),f(p)) < €. Thatis:

En,(f0) - @) <e.

However, notice that

.00 - @] < Ch (G0 — £.()°) <e.

So the same & that forces d(f(x),f(p)) < € will force d(fl(x),fl(p)) < €,

Thus f;(x),i = 1, ..., n are continuous at X = p.
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Now assume fi(x), [ = 1,...,n are continuous and show f(x) is continuous.

So for all € > 0 there exists a §; > 0 such that if d(x,p) < §; then

d(f:(0), fi(P)) < e/n.

Choose 6 = min(dy, ..., 8,,) and notice that:

CL(0) - i) ) S T - @) <n () =«

Thus f(x) is continuous at x = p.

b. Follows from part a and the continuity theorem on page 16.



