1. From the δ , ϵ definition of Continuity, prove the following functions are continuous at the indicated points:

a. f(x) = 3x + 2; at x = 1

b.
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
 when $x \neq 0$;
= 0 when $x = 0$
at $x = 0$.

c. $f(x) = x^2$; at x = 0 and x = 3 (prove continuity at each point separately)

2. Consider the function:

f(x) = x	if $x \ge 0$
= x + 3	if $x < 0$

a. Use a δ , ϵ argument to prove that f(x) is discontinuous at x = 0.

b. Find an open set $U \subseteq \mathbb{R}$ such that $f^{-1}(U)$ is not open and hence f(x) is not continuous on \mathbb{R} .

3. Let f(x) = 0 if x is rational = 1 if x is irrational

a. Prove with a δ, ϵ argument f(x) is not continuous at any point x = a, where "a" is a real number. (You need the fact that any interval around x = a, contains both rational and irrational numbers whether "a" itself is rational or irrational).

b. Find a closed set $E \subseteq \mathbb{R}$ such that $f^{-1}(E)$ is not closed, and hence f(x) is not continuous on \mathbb{R} .

4. Let f(x) = 0 if x is rational = x if x is irrational Give a δ , ϵ proof that f(x) is continuous at x = 0.

5. Give a δ , ϵ proof that $f(x) = x^2 + 3x$ is continuous at x = a, where a is any real number.