Def. Let A and B be 2 sets and f a mapping of A into B. If $E \subseteq A$, $f(E)$ is defined to be the set of elements $f(x)$, for $x \in E$. $f(E)$ is called the **image** of E under f. If $f(A) = B$, we say that f **maps A onto B**.

Def. If $C \subseteq B$, $f^{-1}(C)$ is the set of all $x \in A$ such that $f(x) \in C$. We call $f^{-1}(C)$ the **inverse image** of C under f. If $y \in B$, $f^{-1}(y)$ is the set of all $x \in A$ such that $f(x) = y$.

Ex. Let $A = \mathbb{R}$ and $B = \mathbb{R}$, and $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Now let $E = [-1,1] \subseteq A$, and $C = [1,9] \subseteq B$. Find $f(E)$, $f(A)$, $f^{-1}(C)$, and $f^{-1}(4)$.

Def. Let $f: A \to B$. If for each $y \in B$, $f^{-1}(y)$ consists of at most 1 element, then f is said to be a **1-1 mapping** of A into B .

Note: this is the same as saying that f is 1-1 if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

 f is 1-1 from A into B .

Def. If there exists a 1-1 mapping of A onto B , then we say that A and B can be put into **1-1 correspondence** or that $A \sim B$, i.e., **A** is equivalent to B.

Ex. Let $A = \mathbb{R}$ and $B = \mathbb{R}$, and $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. $f(x)$ is NOT a 1-1 mapping of A into B since, as we just saw, $f^{-1}(4) = \{-2, 2\}$. To be 1-1, the inverse image of every point in B can have at most 1 point (it can have 0 points). However, if $A = \mathbb{R}^+ \cup \{0\} = \{x \in \mathbb{R} \mid x \ge 0\}$, then $f: A \to \mathbb{R}$ is 1-1 into \mathbb{R} .

Ex. Let $A = \{2, 4, 6, 8\}$, $B = \{1, 3, 5, 7, 9\}$, $C = \{1, 3, 5, 7\}$. Let's define the following mappings:

$$
f: A \rightarrow B
$$
 by $f(2) = 1$, $f(4) = 3$, $f(6) = 5$, $f(8) = 7$
 $g: A \rightarrow C$ by $g(2) = 1$, $g(4) = 3$, $g(6) = 5$, $g(8) = 7$

Notice that both f and g are 1-1, but f is 1-1 from A into B and g is 1-1 from A onto C. So we can say that $A \sim C$, A is equivalent to C, but A is not equivalent to B (A is not equivalent to B because we can't find a 1-1 mapping from A onto B).

Def. Let $J_n = \{1,2,3,4,... n\}$; and $J = \{1,2,3,4...\}$ (i.e., *J* is all positive integers).

- a. A is called **Finite** if $A \sim I_n$ for some *n* (the empty set is also considered finite).
- b. \overline{A} is called **Infinite** if \overline{A} is not finite
- c. A is called **Countable** (or countably infinite) if $A \sim I$
- d. A is called **Uncountable** (or uncountably infinite) if A is neither Finite nor Countable
- e. A is called at most countable if A is Finite or Countable

Note: Countable sets are also sometimes called enumerable or denumerable.

These definitions give us a way to talk about the "size" of an infinite set. We say that 2 infinite sets are equivalent (or have the same "size") if we can find a 1-1 correspondence from one set onto the other set. This leads to some counterintuitive results. For example, we can have one infinite set be a proper

subset of the other, yet they have the same "size" (clearly, this can't happen for a finite set).

Ex. Let $A = \{1,2,3,4,...\}$, and $B = \{0,1,2,3,4,...\}$. Even though $A ⊆ B$ and A is a proper subset of B we can find a 1-1 correspondence of A onto B :

$$
f: A \rightarrow B
$$
; by $f(x) = x - 1$.

We need to show that f is 1-1 and onto.

If $f(p) = f(q)$ then $p - 1 = q - 1$, thus $p = q$ and f is 1-1.

Choose any $y \in B$. To show f is "onto" we must be able to find an $x \in A$ such that $f(x) = y$.

But $f(x) = x - 1 = y$ implies that $x = y + 1$ and $(y + 1)\epsilon A$, so $f(x)$ is also "onto".

Thus A is equivalent to B (ie they have the same "size"). They are both countably infinite.

Ex. Let $A = \{1,2,3,4,...\}$, and $B = \{2,4,6,8,...\}$. Show that $A \sim B$.

Let $f: A \to B$; by $f(x) = 2x$.

We need to show that f is 1-1 and onto.

Notice that if $f(p) = f(q)$ then $2p = 2q$ and thus $p = q$. So f is 1-1.

To show f is "onto" we must show given a $y \in B$, we can find an $x \in A$ such that $f(x) = y$.

 $f(x) = 2x = y$ implies that $x = \frac{y}{2}$ $\frac{y}{2}$, which is in A . Thus f is "onto" and $A \sim B$. Ex. $A = \{1,2,3,4,...\}$, and $B = \{0,\pm 1,\pm 2,\pm 3,...\}$ (i.e., *B* is all of the integers). Show A and B are again equivalent:

Let
$$
f: A \to B
$$
; by $f(x) = \frac{x}{2}$ if x is even
= $-(\frac{x-1}{2})$ if x is odd

We need to show that f is 1-1 and onto.

If $f(p) = f(q)$ and p is even, then $f(p) = \frac{p}{2}$ $\frac{p}{2} > 0$. Hence $f(q) = \frac{q}{2}$ $\frac{q}{2}$, otherwise $f(q) \leq 0$ and can't equal $f(p) = \frac{p}{2}$ $\frac{p}{2} > 0$. Thus \overline{p} $\frac{p}{2} = \frac{q}{2}$ 2 , and $p = q$. Similarly, if p is odd $f(p) = -\left(\frac{p-1}{2}\right)$ $\left(\frac{q-1}{2}\right) \leq 0$, and $f(q) = -\left(\frac{q-1}{2}\right)$ $\frac{-1}{2}$ ≤ 0 . Once again, $-\left(\frac{p-1}{2}\right)$ $\binom{-1}{2} = -\left(\frac{q-1}{2}\right)$ $\left(\frac{-1}{2}\right)$, and $p = q$, so f is 1-1.

To show f is "onto" we need to show given any $y \in B$, we can find an $x \in A$ such that $f(x) = y$.

If $y \le 0$ then $f(x) = -\left(\frac{x-1}{2}\right)$ $\frac{-1}{2}$ = y.

Solving for x we get $x = -2y + 1$ which is in A, and $f(-2y + 1) = y$.

If
$$
y > 0
$$
 then $f(x) = \left(\frac{x}{2}\right) = y$.

Solving for x we get $x = 2y$, which is in A, and $f(2y) = y$. So f is onto and $A \sim B$.

Theorem: The set of positive rational numbers, \mathbb{Q}^+ , is countable.

Proof: One can put the set of positive rational numbers, \mathbb{Q}^+ , into 1-1 correspndence with the positive integrers, \mathbb{Z}^+ , by creating a "large" table with the positive integers along the top and side and taking their ratios as the entries of the table. One then creates a 1-1 mapping with \mathbb{Z}^+ by matching the positive integers with elements of the table by taking longer and longer diagonals and "throwing out" duplicate rational numbers (the red numbers):

 $1 \rightarrow \frac{1}{1}$ $\frac{1}{1}$, 2 \rightarrow $\frac{2}{1}$ $\frac{2}{1}$, 3 $\rightarrow \frac{1}{2}$ $\frac{1}{2}$, 4 $\rightarrow \frac{3}{1}$ $\frac{3}{1}$, 5 $\rightarrow \frac{1}{3}$ $\frac{1}{3}$, etc.

Actually, the set of all rational numbers is countable.

A similar argument shows a countable union of countable sets is countable.

Theorem: The set of real numbers between 0 and 1 (inclusive) is uncountable.

Proof: Let's assume that we can list (listing is the same as creating a 1-1 map with the positive integers) all of these real numbers and get a contradiction.

$$
x_1 = 0. a_{11} a_{12} a_{13} a_{14} ...
$$

\n
$$
x_2 = 0. a_{21} a_{22} a_{23} a_{24} ...
$$

\n
$$
x_3 = 0. a_{31} a_{32} a_{33} a_{34} ...
$$

\n
$$
x_4 = 0. a_{41} a_{42} a_{43} a_{44} ...
$$

\n...

where a_{ij} is an integer with $0 \le a_{ij} \le 9$.

But we can always create a real number, x , between 0 and 1 inclusive, which is not on this list by:

 $x = 0.$ ~ a_{11} ~ a_{22} ~ a_{33} ~ a_{44} ...

Where $\sim a_{ii}$ means any digit other than a_{ii} .

That contradicts the assumption that we could list all real numbers between 0 and 1. Hence this set is uncountable.

Ex. Show the set of real numbers between 0 and 5 is equivalent to the set of real numbers between 0 and 1.

Let $A = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ and $B = \{x \in \mathbb{R} \mid 0 \le x \le 5\}$. Define $f: A \rightarrow B$; by $f(x) = 5x$.

We must show that f is a 1-1 mapping of A onto B .

To show f is 1-1: $f(p) = f(q)$ implies that $5p = 5q$ and $p = q$. To show f is onto: given a $y \in B$, we can find an $x \in A$ such that $f(x) = y$. $f(x) = 5x = y$, solving for x we get: $x = \frac{y}{5}$ $\frac{y}{5}$, which is in A , and $f\left(\frac{y}{5}\right)$ $\left(\frac{y}{5}\right) = y.$ So f is onto and $A \sim B$. А 0 3 \overline{B}

Ex. Show that the set of real numbers strictly between 0 and 1 is equivalent to the set of all positive real numbers.

Let $A = \{x \in \mathbb{R} \mid 0 < x < 1\}$ and $B = \{x \in \mathbb{R} \mid 0 < x\}.$ Define $f: A \to B$; by $f(x) = \frac{x}{1+x}$ $\frac{x}{1-x}$ $f(x)$ is 1-1 since if $f(p) = f(q)$ then $\frac{p}{1-p} = \frac{q}{1-p}$ $\frac{q}{1-q}$. $p(1 - q) = q(1 - p)$ which implies $p = q$.

 $f(x)$ is onto since given any positive real number y,

$$
f(x) = \frac{x}{1-x} = y
$$

\n
$$
x = y(1-x) = y - xy
$$

\n
$$
x + xy = y
$$

\n
$$
x(1 + y) = y
$$

\n
$$
x = \frac{y}{1+y} \in A
$$
, and
$$
f\left(\frac{y}{1+y}\right) = y
$$

\nThus $A \sim B$.

Def.
$$
S = \bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup E_3 \cup ... \cup E_n
$$

\n $T = \bigcup_{m=1}^{\infty} E_m = E_1 \cup E_2 \cup E_3 \cup ... \cup E_n \cup ...$

means x is a member of S (or T) if and only if $x\epsilon E_i$ for some $i.$

Ex. Let $E_i = [i, i + 1]$; where *i* is a positive integer

i.e. $E_i = \{x \in \mathbb{R} | i \le x \le i + 1, \text{ where } i \text{ is a positive integer} \}$ For example, $E_5 = \{x \in \mathbb{R} | 5 \le x \le 6\}$. Find $\bigcup_{m=1}^n E_m$, $\bigcup_{m=1}^\infty E_m$. $m=1$

$$
\bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup E_3 \cup ... \cup E_n = [1, n+1]
$$

$$
\bigcup_{m=1}^{\infty} E_m = E_1 \cup E_2 \cup E_3 \cup ... \cup E_n \cup ... = [1, \infty)
$$

$$
\begin{aligned} \text{Def.} \quad P &= \bigcap_{i=1}^n E_i = E_1 \cap E_2 \cap E_3 \cap \dots \cap E_n \\ Q &= \bigcap_{i=1}^\infty E_i = E_1 \cap E_2 \cap E_3 \cap \dots \cap E_n \cap \dots \end{aligned}
$$

means x is a member of P (or Q) if and only if $x \epsilon E_i$ for all $i=1,2,3,...$ n (or ∞)

Ex. Let
$$
E_i = [i, \infty)
$$
, where $i \in \mathbb{Z}^+$. Find $\bigcap_{i=1}^n E_i$, $\bigcap_{i=1}^\infty E_i$.

$$
\bigcap_{i=1}^{n} E_i = E_1 \cap E_2 \cap E_3 \cap \dots \cap E_n = [1, \infty) \cap [2, \infty) \cap \dots \cap [n, \infty) = [n, \infty)
$$

$$
\bigcap_{i=1}^{\infty} E_i = E_1 \cap E_2 \cap E_3 \cap \dots \cap E_n \cap \dots = \emptyset \quad \text{(the empty set)}.
$$

Ex. Let $F_i = [0, \frac{1}{i}]$ $\frac{1}{i}$]; i a positive integer, find $\bigcap_{i=1}^{10} F_i$, $\bigcap_{i=1}^{\infty} F_i$. $i=1$ 10 $i=1$

$$
\bigcap_{i=1}^{10} F_i = F_1 \cap F_2 \cap F_3 \cap \dots \cap F_{10} = [0,1] \cap \left[0, \frac{1}{2}\right] \cap \left[0, \frac{1}{3}\right] \cap \dots \cap \left[0, \frac{1}{10}\right]
$$

$$
= \left[0, \frac{1}{10}\right].
$$

 $\bigcap_{i=1}^{\infty} F_i = F_1 \cap F_2 \cap F_3 \cap ... \cap F_{10} \cap ... = \{0\}.$