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                              Finite, Countable, and Uncountable Sets 

 

Def.  Let 𝐴 and 𝐵 be 2 sets and 𝑓 a mapping of 𝐴 into 𝐵.  If 𝐸 ⊆ 𝐴, 𝑓(𝐸) is defined 

to be the set of elements 𝑓(𝑥), for 𝑥𝜖𝐸.   𝑓(𝐸) is called the image of 𝐸 under 𝑓.   

If 𝑓(𝐴) = 𝐵, we say that 𝑓 maps A onto B. 

𝑓 maps 𝐴 onto 𝐵                                        𝑔 maps 𝑋 into 𝑌 

                                                                              

 

 

 

 

 

 

 

                                                                                  

Def.  If 𝐶 ⊆ 𝐵, 𝑓−1(𝐶) is the set of all 𝑥𝜖𝐴 such that 𝑓(𝑥)𝜖𝐶.  We call 𝑓−1(𝐶) the 

inverse image of 𝐶 under 𝑓.  If 𝑦𝜖𝐵,  𝑓−1(𝑦) is the set of all 𝑥𝜖𝐴 such that   

𝑓(𝑥) = 𝑦.                                                    

  

                                                                                   

                                                                         𝑓−1(4) = {−1,2} 

                                                                         𝑓−1({1,4}) = {−1,2,9} 
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Ex.  Let  𝐴 = ℝ and 𝐵 = ℝ,  and 𝑓: ℝ →  ℝ   by 𝑓(𝑥) = 𝑥2.   Now let 

 𝐸 = [−1,1] ⊆ 𝐴,  and 𝐶 = [1,9] ⊆ 𝐵.  Find 𝑓(𝐸), 𝑓(𝐴), 𝑓−1(𝐶), and 𝑓−1(4). 

 

         

    𝑓(𝐸) = [0,1]  and  𝑓(𝐴) = [0, ∞). 

𝑓−1(𝐶) = {𝑥| 𝑓(𝑥)𝜖[1,9]} = {𝑥|  1 ≤ 𝑥2 ≤ 9}  

              = {−3 ≤ 𝑥 ≤ −1} ∪ {1 ≤ 𝑥 ≤ 3} 

𝑓−1(4) = {𝑥| 𝑥2 = 4} = {−2, 2}  

 

Def.  Let  𝑓: 𝐴 → 𝐵.  If for each 𝑦𝜖𝐵,  𝑓−1(𝑦) consists of at most 1 element, then 𝑓 

is said to be a 1-1 mapping of 𝐴 into 𝐵.   

Note: this is the same as saying that 𝑓 is 1-1 if 𝑓(𝑥1) = 𝑓(𝑥2)  implies 𝑥1 = 𝑥2. 

 

                                                                             𝑓 is 1-1 from 𝐴 into 𝐵.                                                                                       

 

                                                                         

 

 

Def.  If there exists a 1-1 mapping of 𝐴 onto 𝐵, then we say that 𝐴 and 𝐵 can be 

put into 1-1 correspondence or that 𝑨~𝑩,  i.e.,   A is equivalent to B. 

 

                                                                     𝑔 is 1-1 from 𝑋 onto 𝑌, so 𝑋~𝑌. 
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Ex.     Let  𝐴 = ℝ and 𝐵 = ℝ,  and 𝑓: ℝ →  ℝ   by 𝑓(𝑥) = 𝑥2.  𝑓(𝑥) is NOT a 1-1 

mapping of 𝐴 into 𝐵 since, as we just saw, 𝑓−1(4) = {−2, 2} .  To be 1-1, the 

inverse image of every point in 𝐵 can have at most 1 point (it can have 0 points).  

However, if 𝐴 = ℝ+ ∪ {0} = {𝑥 ∈ ℝ| 𝑥 ≥ 0}, then 𝑓: 𝐴 →  ℝ   is 1-1 into ℝ. 

 

Ex.   Let 𝐴 = {2,4,6,8},   𝐵 = {1,3,5,7,9},    𝐶 = {1,3,5,7}.  Let’s define the 

following mappings: 

𝑓: 𝐴 → 𝐵   by   𝑓(2) = 1,   𝑓(4) = 3,   𝑓(6) = 5,   𝑓(8) = 7 

𝑔: 𝐴 → 𝐶   by   𝑔(2) = 1,   𝑔(4) = 3,   𝑔(6) = 5,   𝑔(8) = 7 

Notice that both 𝑓 and 𝑔 are 1-1, but 𝑓 is 1-1 from 𝐴 into 𝐵 and 𝑔 is 1-1 from 𝐴 

onto 𝐶.  So we can say that 𝐴~𝐶,  𝐴 is equivalent to 𝐶, but 𝐴 is not equivalent to 

𝐵 (𝐴 is not equivalent to 𝐵 because we can’t find a 1-1 mapping from 𝐴 onto 𝐵). 

 

Def.  Let  𝐽𝑛 = {1,2,3,4, … 𝑛};   and  𝐽 = {1,2,3,4 … }   (i.e., 𝐽 is all positive integers). 

a.  𝐴 is called Finite if 𝐴~𝐽𝑛 for some 𝑛 (the empty set is also considered finite). 

b.   𝐴 is called Infinite if 𝐴 is not finite 

c.   𝐴 is called Countable (or countably infinite) if  𝐴~𝐽 

d.   𝐴 is called Uncountable (or uncountably infinite) if 𝐴 is neither Finite nor 

      Countable 

e.   𝐴 is called at most countable if 𝐴 is Finite or Countable 

Note:  Countable sets are also sometimes called enumerable or denumerable. 

These definitions give us a way to talk about the “size” of an infinite set.  We say 

that 2 infinite sets are equivalent (or have the same “size”) if we can find a 1-1 

correspondence from one set onto the other set.  This leads to some 

counterintuitive results.  For example, we can have one infinite set be a proper 
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subset of the other, yet they have the same “size” (clearly, this can’t happen for a 

finite set). 

Ex.   Let  𝐴 = {1,2,3,4, … },   and  𝐵 = {0,1,2,3,4, … }.  Even though 𝐴 ⊆ 𝐵 and 𝐴 is 

a proper subset of 𝐵 we can find a 1-1 correspondence of 𝐴 onto 𝐵: 

                                           𝑓: 𝐴 → 𝐵;  by    𝑓(𝑥) = 𝑥 − 1. 

We need to show that 𝑓 is 1-1 and onto. 

If 𝑓(𝑝) = 𝑓(𝑞) then 𝑝 − 1 = 𝑞 − 1,  thus 𝑝 = 𝑞 and 𝑓 is 1-1.  

 

Choose any 𝑦𝜖𝐵.  To show 𝑓 is “onto” we must be able to find an 𝑥𝜖𝐴 such that 

𝑓(𝑥) = 𝑦.   

But  𝑓(𝑥) = 𝑥 − 1 = 𝑦 implies that 𝑥 = 𝑦 + 1 and (𝑦 + 1)𝜖𝐴,  so 𝑓(𝑥) is also 

“onto”.    

Thus 𝐴 is equivalent to 𝐵 (ie they have the same “size”).  They are both countably 

infinite. 

 

Ex.  Let  𝐴 = {1,2,3,4, … },   and  𝐵 = {2,4,6,8, … }.  Show that 𝐴~𝐵. 

 

Let 𝑓: 𝐴 → 𝐵;  by    𝑓(𝑥) = 2𝑥. 

 

We need to show that 𝑓 is 1-1 and onto. 

Notice that if 𝑓(𝑝) = 𝑓(𝑞)  then 2𝑝 = 2𝑞 and thus 𝑝 = 𝑞.  So 𝑓 is 1-1.  

 

To show 𝑓 is “onto” we must show given a 𝑦𝜖𝐵, we can find an 𝑥𝜖𝐴 such that 

𝑓(𝑥) = 𝑦.   

𝑓(𝑥) = 2𝑥 = 𝑦 implies that 𝑥 =
𝑦

2
 , which is in 𝐴.  Thus 𝑓 is “onto” and 𝐴~𝐵. 
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Ex.   𝐴 = {1,2,3,4, … },   and  𝐵 = {0, ±1, ±2, ±3, … }  (i.e., 𝐵 is all of the integers).  

Show 𝐴 and 𝐵 are again equivalent: 

 

 Let  𝑓: 𝐴 → 𝐵;   by     𝑓(𝑥) =
𝑥

2
                  if 𝑥 is even    

                                                  = −(
𝑥−1

2
)       if 𝑥 is odd     

We need to show that 𝑓 is 1-1 and onto. 

If 𝑓(𝑝) = 𝑓(𝑞) and 𝑝 is even, then 𝑓(𝑝) =
𝑝

2
> 0.    

Hence 𝑓(𝑞) =
𝑞

2
 , otherwise 𝑓(𝑞) ≤  0 and can’t equal 𝑓(𝑝) =

𝑝

2
> 0.   

Thus  
𝑝

2
=

𝑞

2
 ,  and 𝑝 = 𝑞.       

Similarly, if 𝑝 is odd  𝑓(𝑝) = − (
𝑝−1

2
) ≤ 0 , and  𝑓(𝑞) = − (

𝑞−1

2
) ≤ 0 .      

Once again,  − (
𝑝−1

2
) = − (

𝑞−1

2
) ,  and 𝑝 = 𝑞,  so 𝑓 is 1-1.  

 

To show 𝑓 is “onto” we need to show given any 𝑦𝜖𝐵, we can find an 𝑥𝜖𝐴 such 

that 𝑓(𝑥) = 𝑦.   

If 𝑦 ≤ 0 then  𝑓(𝑥) = − (
𝑥−1

2
) = 𝑦 .   

Solving for 𝑥  we get 𝑥 = −2𝑦 + 1  which is in 𝐴, and 𝑓(−2𝑦 + 1) = 𝑦. 

 

If   𝑦 > 0  then 𝑓(𝑥) = (
𝑥

2
) = 𝑦.  

Solving for 𝑥 we get  𝑥 = 2𝑦,  which is in 𝐴, and 𝑓(2𝑦) = 𝑦.                                      

So 𝑓 is onto and 𝐴~𝐵. 
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Theorem:   The set of positive rational numbers, ℚ+, is countable.  

 

Proof:  One can put the set of positive rational numbers, ℚ+, into  1-1 

correspndence with the positive integrers, ℤ+, by creating a “large” table with the 

positive integers along the top and side and taking their ratios as the entries of 

the table. One then creates a 1-1  mapping with ℤ+ by matching the positive 

integers with elements of the table by taking longer and longer diagonals and 

“throwing out” duplicate rational numbers (the red numbers): 

                                1        2         3         4         5         6        7 

                             

                   

                                              

 

    

 

 

 

 

 

 

 

1 →
1

1
,   2 →

2

1
,   3 →

1

2
,   4 →

3

1
,   5 →

1

3
 ,   etc.  

Actually, the set of all rational numbers is countable. 
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A similar argument shows a countable union of countable sets is countable. 

 

Theorem:  The set of real numbers between 0 and 1 (inclusive) is uncountable. 

 

Proof:  Let’s assume that we can list (listing is the same as creating a 1-1 map with 

the positive integers) all of these real numbers and get a contradiction. 

𝑥1 = 0. 𝑎11𝑎12𝑎13𝑎14 …  

𝑥2 = 0. 𝑎21𝑎22𝑎23𝑎24 …  

𝑥3 = 0. 𝑎31𝑎32𝑎33𝑎34 …  

𝑥4 = 0. 𝑎41𝑎42𝑎43𝑎44 …  

⋮  

where 𝑎𝑖𝑗  is an integer with 0 ≤ 𝑎𝑖𝑗 ≤ 9.  

 

But we can always create a real number, 𝑥, between 0 and 1 inclusive, which is 

not on this list by: 

𝑥 = 0. ~𝑎11~𝑎22~𝑎33~𝑎44 … . 

Where ~𝑎𝑖𝑖 means any digit other than 𝑎𝑖𝑖. 

That contradicts the assumption that we could list all real numbers between 0 

and 1.   Hence this set is uncountable. 
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Ex.  Show the set of real  numbers between 0 and 5 is equivalent to the set of real 

numbers between 0 and 1. 

 

Let   𝐴 = {𝑥𝜖ℝ|  0 ≤ 𝑥 ≤ 1}  and   𝐵 = {𝑥𝜖ℝ|  0 ≤ 𝑥 ≤ 5} . 

Define 𝑓: 𝐴 → 𝐵;    by 𝑓(𝑥) = 5𝑥.  

We must show that  𝑓 is a 1-1 mapping of 𝐴 onto 𝐵. 

 

To show 𝑓 is 1-1:  𝑓(𝑝) = 𝑓(𝑞) implies that 5𝑝 = 5𝑞 and 𝑝 = 𝑞. 

To show 𝑓 is onto:  given a 𝑦𝜖𝐵, we can find an 𝑥𝜖𝐴 such that 𝑓(𝑥) = 𝑦.    

𝑓(𝑥) = 5𝑥 = 𝑦, solving for 𝑥 we get:  𝑥 =
𝑦

5
 ,  which is in 𝐴, and 𝑓 (

𝑦

5
) = 𝑦. 

So 𝑓 is onto and 𝐴~𝐵. 
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Ex.  Show that the set of real numbers strictly between 0 and 1 is equivalent to 

the set of all positive real numbers. 

 

Let   𝐴 = {𝑥𝜖ℝ|  0 < 𝑥 < 1}  and   𝐵 = {𝑥𝜖ℝ|  0 < 𝑥}. 

Define 𝑓: 𝐴 → 𝐵;    by 𝑓(𝑥) =
𝑥

1−𝑥
    

𝑓(𝑥) is 1-1 since if 𝑓(𝑝) = 𝑓(𝑞) then 
𝑝

1−𝑝
=

𝑞

1−𝑞
 . 

𝑝(1 − 𝑞) = 𝑞(1 − 𝑝)  

which implies 𝑝 = 𝑞.   

 

𝑓(𝑥) is onto since given any positive real number 𝑦,  

𝑓(𝑥) =
𝑥

1−𝑥
= 𝑦  

𝑥 = 𝑦(1 − 𝑥) = 𝑦 − 𝑥𝑦  

𝑥 + 𝑥𝑦 = 𝑦  

𝑥(1 + 𝑦) = 𝑦  

𝑥 =
𝑦

1+𝑦
∈ 𝐴 , and 𝑓 (

𝑦

1+𝑦
) = 𝑦 

Thus 𝐴~𝐵. 

 

Def.  𝑆 = ⋃ 𝐸𝑚 = 𝐸1
𝑛
𝑚=1 ∪ 𝐸2 ∪ 𝐸3 ∪ … ∪ 𝐸𝑛 

         𝑇 = ⋃ 𝐸𝑚 = 𝐸1
∞
𝑚=1 ∪ 𝐸2 ∪ 𝐸3 ∪ … ∪ 𝐸𝑛 ∪ … 

means 𝑥 is a member of 𝑆 (or 𝑇) if and only if 𝑥𝜖𝐸𝑖 for some 𝑖. 
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Ex.   Let 𝐸𝑖 = [𝑖, 𝑖 + 1] ;  where 𝑖 is a positive integer 

 i.e.  𝐸𝑖 = {𝑥𝜖ℝ| 𝑖 ≤ 𝑥 ≤ 𝑖 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑖 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟}  

For example,   𝐸5 = {𝑥𝜖ℝ| 5 ≤ 𝑥 ≤ 6}.  Find ⋃ 𝐸𝑚,   𝑛
𝑚=1 ⋃ 𝐸𝑚.∞

𝑚=1   

 

⋃ 𝐸𝑚 = 𝐸1
𝑛
𝑚=1 ∪ 𝐸2 ∪ 𝐸3 ∪ … ∪ 𝐸𝑛 = [1, 𝑛 + 1]  

⋃ 𝐸𝑚 = 𝐸1
∞
𝑚=1 ∪ 𝐸2 ∪ 𝐸3 ∪ … ∪ 𝐸𝑛 ∪ … = [1, ∞)  

 

 

Def.    𝑃 = ⋂ 𝐸𝑖 = 𝐸1
𝑛
𝑖=1 ∩ 𝐸2 ∩ 𝐸3 ∩ … ∩ 𝐸𝑛 

          𝑄 = ⋂ 𝐸𝑖 = 𝐸1
∞
𝑖=1 ∩ 𝐸2 ∩ 𝐸3 ∩ … ∩ 𝐸𝑛 ∩ … 

means 𝑥 is a member of 𝑃 (or 𝑄) if and only if  𝑥𝜖𝐸𝑖    for all 𝑖 = 1,2,3, … 𝑛 (or ∞) 

 

Ex.  Let 𝐸𝑖 = [𝑖, ∞),  where 𝑖 ∈ ℤ+.  Find ⋂ 𝐸𝑖,
𝑛
𝑖=1   ⋂ 𝐸𝑖

∞
𝑖=1 .  

 

⋂ 𝐸𝑖 = 𝐸1
𝑛
𝑖=1 ∩ 𝐸2 ∩ 𝐸3 ∩ … ∩ 𝐸𝑛 = [1, ∞) ∩ [2, ∞) ∩ ⋯ ∩ [𝑛, ∞) = [𝑛, ∞)  

⋂ 𝐸𝑖 = 𝐸1
∞
𝑖=1 ∩ 𝐸2 ∩ 𝐸3 ∩ … ∩ 𝐸𝑛 ∩ … = ∅   (the empty set).  

 

Ex.   Let 𝐹𝑖 = [0,
1

𝑖
] ;  𝑖 a positive integer, find ⋂ 𝐹𝑖 ,   ⋂ 𝐹𝑖 .   ∞

𝑖=1
10
𝑖=1    

 

 ⋂ 𝐹𝑖 = 𝐹1
10
𝑖=1 ∩ 𝐹2 ∩ 𝐹3 ∩ … ∩ 𝐹10 = [0,1] ∩ [0,

1

2
] ∩ [0,

1

3
] ∩ … ∩ [0,

1

10
] 

                                                               = [0,
1

10
].     

 ⋂ 𝐹𝑖 = 𝐹1
∞
𝑖=1 ∩ 𝐹2 ∩ 𝐹3 ∩ … ∩ 𝐹10 ∩ … = {0}. 


