Finite, Countable, and Uncountable Sets- HW Problems

1. Prove the following sets are Countable (i.e., there is a 1-1 mapping onto the set $J = \{1,2,3,4,...\}$)

a.
$$A = \{-2, -4, -6, -8, \dots\}$$

b.
$$B = \{-1, -3, -5, -7, \dots\}$$

c.
$$C = \{-1, -4, -9, -16, \dots\}$$

2. Show that sets B and C are equivalent to $A = \{x \in \mathbb{R} | 0 < x < 1\}$

a.
$$B = \{x \in \mathbb{R} | 0 < x < 10\}$$

b.
$$C = \{x \in \mathbb{R} | -4 < x < -1\}$$

- 3a. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Find $f^{-1}(16)$ and $f^{-1}(U)$, where U = [9,16].
- b. $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^2 + y^2$. Find $f^{-1}(0)$, $f^{-1}(1)$, and $f^{-1}(U)$, where U = (1,4).
- 4. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and let U = (-1, 1).
 - a. Find $f^{-1}(U)$.
 - b. Find $f(f^{-1}(U))$. (Notice that $f(f^{-1}(U)) \subseteq U$, but $f(f^{-1}(U)) \neq U$)