Group Homomorphisms

Recall that an isomorphism of a group G with a group G' is a 1-1 function mapping G onto G' such that:

$$\phi(xy) = \phi(x)\phi(y)$$
 for all $x, y \in G$.

Isomorphic groups have the same group structure.

Def. A map $\phi: G \to G'$ is a **group homomorphism** if

$$\phi(xy) = \phi(x)\phi(y)$$
 for all $x, y \in G$.

An isomorphism is a type of homomorphism that is 1-1 and onto.

For any groups G, G' there is always at least one homomorphism, $\phi: G \to G'$, given by $\phi(g) = e'$ for all $g \in G$. This is called the **trivial homomorphism**. However, this is not a very useful homomorphism because no information about the group structures of G and G' can be gained from this.

Ex. Let $\phi: G_1 \to G_2$ be a homomorphism of G_1 into G_2 . Show that If G_1 is abelian and ϕ is onto then G_2 must be abelian. However, if ϕ is not onto then G_2 need not be abelian.

To show G_2 is abelian we must show given any $a_2, b_2 \in G_2$ that $a_2b_2 = b_2a_2$. Since ϕ is onto, we know there is at least one $a_1 \in G_1$ and at least one

 $b_1 \in G_1$ such that $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$.

Since G_1 is abelian $a_1b_1 = b_1a_1$. So we know:

$$a_2b_2 = \phi(a_1)\phi(b_1) = \phi(a_1b_1) = \phi(b_1a_1)$$
$$= \phi(b_1)\phi(a_1) = b_2a_2$$

Thus, G_2 is abelian.

Notice that if ϕ is not onto then we can have the trivial homomorphism:

$$\phi: \mathbb{Z}_6 \to S_3, \quad \phi(k) = \rho_0 = identity.$$

Thus $G_1 = \mathbb{Z}_6$ is abelian but $G_2 = S_3$ is non-abelian.

Ex. Let $r \in \mathbb{Z}$. Consider two mappings from \mathbb{Z} , + to \mathbb{Z} ,+ :

$$\phi_1: \mathbb{Z} \to \mathbb{Z}; \ \phi_1(n) = rn \text{ for all } n \in \mathbb{Z}$$
$$\phi_2: \mathbb{Z} \to \mathbb{Z}; \ \phi_2(n) = rn + 1 \text{ for all } n \in \mathbb{Z}.$$

Show that ϕ_1 is a homomorphism but that ϕ_2 is not.

$$\phi_1(m+n) = r(m+n) = rm + rn = \phi_1(m) + \phi_1(n)$$

so ϕ_1 is a homomorphism.

$$\phi_2(m+n) = r(m+n) + 1 = rm + rn + 1$$

 $\phi_2(m) + \phi_2(n) = rm + 1 + rn + 1 = rm + rn + 2.$
Thus $\phi_2(m+n) \neq \phi_2(m) + \phi_2(n).$
So ϕ_2 is not a homomorphism.

Ex. Let $\phi: GL(2, \mathbb{R}) \to \mathbb{R}^*$ by $\phi(A) = det A$. Show ϕ is a homomorphism.

For
$$A, B \in GL(2, \mathbb{R})$$
,
 $\phi(AB) = det(AB) = (detA)(detB) = \phi(A)\phi(B)$.
Note: $GL(2, \mathbb{R})$ is non-abelian and \mathbb{R}^* is abelian. So you can have a
homomorphism from a non-abelian group onto an abelian group.

Ex. Let F be the group of all real valued functions on \mathbb{R} under addition. Show $\phi: F \to \mathbb{R}$ by $\phi(f) = f(3)$ is a homomorphism.

$$\phi(f+g) = (f+g)(3) = (f(3)) + (g(3)) = \phi(f) + \phi(g).$$

Ex. Let S_n be the symmetric group on n letters.

Let $\phi: S_n \to \mathbb{Z}_2$ be defined by $\phi(\sigma) = 0$ if σ is an even permutation = 1 if σ is an odd permutation.

Show ϕ is a homomorphism.

We must show $\phi(\sigma\tau) = (\phi(\sigma) + \phi(\tau)) \pmod{2}$ for all $\sigma, \tau \in S_n$. There are 4 cases:

- 1) σ even and τ even
- 2) σ odd and τ even
- 3) σ even and au odd
- 4) σ odd and au odd

<u>Case</u>		<u>φ(στ)</u>		$\phi(\sigma) + \phi(\tau)$
1	σau is even	0	=	0 + 0
2	σau is odd	1	=	1 + 0
3	σau is odd	1	=	0 + 1
4	σau is even	0	=	$1 + 1 = 0 \mod 2.$

Note: ϕ is not 1-1, but it is onto.

Ex. $\phi: \mathbb{Z} \to \mathbb{Z}_n$, where $\phi(m) = m \pmod{n}$ is a homomorphism.

This follows from the fact that:

 $(r+s) \pmod{n} = [r \pmod{n} + s \pmod{n}] \pmod{n}.$

Note: This homomorphism is very useful and we will use it later.

Ex. Let F_1 be the group of infinitely differentiable functions on \mathbb{R} under addition and F_2 be the group of infinitely differentiable functions on \mathbb{R} , such that $f(x) \neq 0$ for any $x \in \mathbb{R}$ under multiplication.

Let
$$\phi_1: F_1 \to F_1$$
 by $\phi_1(f) = f'(x)$.

Let $\phi_2: F_1 \to F_2$ by $\phi_1(f) = 2^{f(x)}$.

Show that ϕ_1 and ϕ_2 are homomorphisms and determine if they are 1-1 or onto.

$$\phi_1(f+g) = (f+g)'(x) = f'(x) + g'(x) = \phi_1(f) + \phi_1(g).$$

$$\phi_2(f+g) = 2^{(f(x)+g(x))} = 2^{f(x)} \cdot 2^{g(x)} = \phi_2(f) \cdot \phi_2(g).$$

 ϕ_1 is not 1-1 because $\phi_1(f) = \phi_1(g) \Longrightarrow f'(x) = g'(x)$, but that only implies that f(x) = g(x) + C, not f(x) = g(x). ϕ_1 is onto because given any $g(x) \in F_2$, by the fundamental theorem of Calculus, if $f(x) = \int_0^x g(t)dt$, then $\phi_1(f) = f'(x) = g(x)$.

 ϕ_2 is 1-1 because $\phi_2(f) = \phi_2(g) \Longrightarrow 2^{f(x)} = 2^{g(x)} \Longrightarrow f = g$. ϕ_2 is not onto since $\phi_1(f) = 2^{f(x)} > 0$. So, for example, g(x) = -1 is not in the image of ϕ_2 .

Def: Let $A \subseteq X, B \subseteq Y, \ \phi: X \to Y$. The **image** $\phi[A]$ of A in Y under ϕ is $\{\phi(a) \mid a \in A\}$. $\phi[X]$ is the **range** of ϕ . The **inverse image** $\phi^{-1}[B]$ of B in X is $\{x \in X \mid \phi(x) \in B\}$.

Theorem: Let ϕ be a homomorphism of a group G into a group G'.

- 1) If e is the identity element in G then $\phi(e) = e'$, the identity element of G'.
- 2) If $a \in G$, then $\phi(a^{-1}) = (\phi(a))^{-1}$.
- 3) If H is a subgroup of G, then $\phi[H]$ is a subgroup of G'.
- 4) If K' is a subgroup of $G' \cap \phi[G]$, then $\phi^{-1}[K']$ is a subgroup of G.

So ϕ preserves the identity, inverses, and subgroups.

Proof 1,2 and 3:

1) $\phi(a) = \phi(ae) = \phi(a)\phi(e)$. Multiply both sides by $(\phi(a))^{-1}$. $e' = \phi(e)$.

2)
$$e' = \phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}).$$

Multiply by $(\phi(a))^{-1}$ on the left $\implies (\phi(a))^{-1} = \phi(a^{-1}).$

3)
$$H \leq G$$
. Let $\phi(a), \phi(b) \in \phi[H]$.
 $\phi(a)\phi(b) = \phi(ab) \in \phi[H]$, so $\phi[H]$ is closed under
multiplication.
By 2. $\phi(a^{-1}) = (\phi(a))^{-1} \implies (\phi(a))^{-1} \in \phi[H]$

By 2, $\phi(a^{-1}) = (\phi(a))^{-1} \implies (\phi(a))^{-1} \in \phi[H]$ so $\phi[H] \le G'$.

Notice that $\{e'\}$ is a subgroup of G', so $\phi^{-1}(e')$ is a subgroup of G.

Def. Let $\phi: G \to G'$ be a homomorphism of groups.

The subgroup $\phi^{-1}(e') = \{x \in G \mid \phi(x) = e'\}$ is the **kernel** of ϕ , denoted ker(ϕ).

Theorem: Let $\phi \colon G \to G'$ be a group homomorphism, and

let
$$H = \ker(\phi)$$
. Let $a \in G$. Then the set:

$$\phi^{-1}[\phi(a)] = \{ x \in G | \phi(x) = \phi(a) \}$$

is the left coset aH of H, and is also the right coset Ha of H.

So the two partitions of G into left cosets and into right cosets of H are the same.

Ex. Let F be the group of infinitely differentiable functions on \mathbb{R} under addition. Let $\phi: F \to F$ be the homomorphism $\phi(f) = f'(x)$. What is the kernel of ϕ ?

The identity element of F is the function f(x) = 0. So $\ker(\phi) = \{f \in F | \phi(f) = f'(x) = 0\}$, So $\ker(\phi) = \{f \in F | f(x) = \text{constant}\}$.

Corollary: A group homomorphism $\phi: G \to G'$ is 1-1 if, and only if, $\ker(\phi) = \{e\}.$

Proof: If $ker(\phi) = \{e\}$ then by our theorem for every $a \in G$, the elements that get mapped to $\phi(a)$ is the coset $a\{e\} = \{a\}$. Thus ϕ is 1-1.

If ϕ is 1-1, we know $\phi(e) = e'$ so e is the only element that gets mapped to e' and hence, $\ker(\phi) = e$.

So when we want to prove $\phi: G \to G'$ is an isomorphism:

Step 1: Show ϕ is a homomorphism.

- Step 2: Show $ker(\phi) = \{e\}$ (which implies ϕ is 1-1)
- Step 3: Show ϕ is onto.

Our theorem shows that the kernel of a homomorphism is a subgroup whose left cosets and right cosets coincide, gH = Hg for all $g \in G$.

Def. A subgroup H of a group G is **normal** if its left and right cosets coincide, i.e. gH = Hg for all $g \in G$.

Corollary: If $\phi: G \to G'$ is a group homomorphism, then $\ker(\phi)$ is a normal subgroup of G.

Notice also that for any abelian group G, any subgroup H is a normal subgroup.

Ex. Suppose $\phi \colon \mathbb{Z} \to \mathbb{Z}_{12}$ is a homomorphism with $\phi(1) = 9$. Find a) ker(ϕ) and b) $\phi(19)$.

a)
$$\phi(1) = 9$$

 $\phi(2) = \phi(1+1) = \phi(1) + \phi(1) = (9+9) \pmod{12} = 6$
 $\phi(3) = \phi(1+2) = \phi(1) + \phi(2) = (9+6) \pmod{12} = 3$
 $\phi(4) = \phi(1+3) = \phi(1) + \phi(3) = (9+3) \pmod{12} = 0$
So $4 \in \ker(\phi)$.

But notice:

$$\phi(4+4) = \phi(4) + \phi(4) = 0$$

$$\phi(4+4+4) = \phi(4) + \phi(4) + \phi(4) = 0$$

etc, so any multiple of 4 is in ker(ϕ).
ker(ϕ) is a subgroup of \mathbb{Z} , so it must be of the form $n\mathbb{Z}$.
So ker(ϕ) = 4 \mathbb{Z} .

b)
$$\phi(19) = \phi(16+3) = \phi(16) + \phi(3) = 0 + 3 = 3$$
.
Or we could say:
 $\phi(19) = \phi(1 + 1 + \dots + 1) = 19(\phi(1))$
 $= 19(9) \pmod{12}$
 $= 171 \pmod{12} = 3$.

Ex. Find all homomorphisms from $\mathbb Z$ into $\mathbb Z_3.$

A homomorphism is completely defined by that it does to a generator of a cyclic group. So we just need to find $\phi(1)$.

There are three possibilities:

 $\phi(1) = 0$ in which case $\phi(n) = 0$, $\phi(1) = 1$ in which case $\phi(n) = n \pmod{3}$, or $\phi(1) = 2$ in which case $\phi(n) = 2n \pmod{3}$.

So there are only three different homomorphisms from $\mathbb Z$ to $\mathbb Z_3.$

Ex. Show that A_n , the alternating group on n letters (i.e. the even permutations in S_n) is a normal subgroup of S_n .

We saw earlier that

$$\phi: S_n \to \mathbb{Z}_2$$
 by $\phi(\sigma) = 0$ if σ is even
= 1 if σ is odd

is a homomorphism.

 $\ker \phi = A_n, \text{ thus } A_n \text{ is a normal subgroup of } S_n.$