Group Homomorphisms

Recall that an isomorphism of a group G with a group G' is a 1-1 function mapping G onto G' such that:

$$
\phi(xy) = \phi(x)\phi(y) \text{ for all } x, y \in G.
$$

Isomorphic groups have the same group structure.

Def. A map ϕ : $G \to G'$ is a **group homomorphism** if

$$
\phi(xy) = \phi(x)\phi(y) \text{ for all } x, y \in G.
$$

An isomorphism is a type of homomorphism that is 1-1 and onto.

For any groups G , G' there is always at least one homomorphism, $\boldsymbol{\phi}\colon G \,\to\, G$ ', given by $\phi(g) = e'$ for all $g \in G$. This is called the **trivial homomorphism**. However, this is not a very useful homomorphism because no information about the group structures of G and G' can be gained from this.

Ex. Let $\phi: G_1 \to G_2$ be a homomorphism of G_1 into G_2 . Show that If G_1 is abelian and ϕ is onto then G_2 must be abelian. However, if ϕ is not onto then G_2 need not be abelian.

To show G_2 is abelian we must show given any $a_2, b_2 \in G_2$ that $a_2 b_2 = b_2 a_2.$ Since ϕ is onto, we know there is at least one $a_1 \in G_1$ and at least one

 $b_1 \in G_1$ such that $\phi(a_1) = a_2$ and $\phi(b_1) = b_2$.

Since G_1 is abelian $a_1 b_1 = b_1 a_1$. So we know: $a_2b_2 = \phi(a_1)\phi(b_1) = \phi(a_1b_1) = \phi(b_1a_1)$ $= \phi(b_1)\phi(a_1) = b_2 a_2$

Thus, G_2 is abelian.

Notice that if ϕ is not onto then we can have the trivial homomorphism:

$$
\phi \colon \mathbb{Z}_6 \to S_3
$$
, $\phi(k) = \rho_0 = identity$.

Thus $G_1 = \mathbb{Z}_6$ is abelian but $G_2 = S_3$ is non-abelian.

Ex. Let $r \in \mathbb{Z}$. Consider two mappings from \mathbb{Z} , + to \mathbb{Z} , + :

$$
\phi_1: \mathbb{Z} \to \mathbb{Z}; \ \phi_1(n) = rn \text{ for all } n \in \mathbb{Z}
$$

$$
\phi_2: \mathbb{Z} \to \mathbb{Z}; \ \phi_2(n) = rn + 1 \text{ for all } n \in \mathbb{Z}.
$$

Show that ϕ_1 is a homomorphism but that ϕ_2 is not.

 $\phi_1(m+n) = r(m+n) = rm + rn = \phi_1(m) + \phi_1(n)$ so ϕ_1 is a homomorphism.

$$
\phi_2(m+n) = r(m+n) + 1 = rm + rn + 1
$$

\n
$$
\phi_2(m) + \phi_2(n) = rm + 1 + rn + 1 = rm + rn + 2.
$$

\nThus
$$
\phi_2(m+n) \neq \phi_2(m) + \phi_2(n).
$$

\nSo
$$
\phi_2
$$
 is not a homomorphism.

Ex. Let ϕ : $GL(2,\mathbb{R}) \to \mathbb{R}^*$ by $\phi(A) = detA$. Show ϕ is a homomorphism.

For
$$
A, B \in GL(2, \mathbb{R})
$$
,
\n $\phi(AB) = det(AB) = (detA)(detB) = \phi(A)\phi(B)$.
\nNote: $GL(2, \mathbb{R})$ is non-abelian and \mathbb{R}^* is abelian. So you can have a
\nhomomorphism from a non-abelian group onto an abelian group.

Ex. Let F be the group of all real valued functions on $\mathbb R$ under addition. Show ϕ : $F \to \mathbb{R}$ by $\phi(f) = f(3)$ is a homomorphism.

$$
\phi(f+g) = (f+g)(3) = (f(3)) + (g(3)) = \phi(f) + \phi(g).
$$

Ex. Let S_n be the symmetric group on n letters.

Let ϕ : $S_n \to \mathbb{Z}_2$ be defined by $\phi(\sigma) = 0$ if σ is an even permutation $= 1$ if σ is an odd permutation.

Show ϕ is a homomorphism.

We must show $\phi(\sigma \tau) = (\phi(\sigma) + \phi(\tau))$ (*mod* 2) for all $\sigma, \tau \in S_n$. There are 4 cases:

- 1) σ even and τ even
- 2) σ odd and τ even
- 3) σ even and τ odd
- 4) σ odd and τ odd

Note: ϕ is not 1-1, but it is onto.

Ex. $\phi \colon \mathbb{Z} \to \mathbb{Z}_n$, where $\phi(m) = m \pmod{n}$ is a homomorphism.

This follows from the fact that:

 $(r + s)$ (mod n) = [r (mod n) + s (mod n)] (mod n).

Note: This homomorphism is very useful and we will use it later.

Ex. Let F_1 be the group of infinitely differentiable functions on $\mathbb R$ under addition and F_2 be the group of infinitely differentiable functions on $\mathbb R$, such that $f(x) \neq 0$ for any $x \in \mathbb{R}$ under multiplication. Let $\phi_1: F_1 \to F_1$ by $\phi_1(f) = f'(x)$.

$$
\begin{array}{c}\n\ldots \\
\vdots \\
\vdots \\
\vdots\n\end{array}
$$

Let $\phi_2\!:\! F_1 \rightarrow F_2$ by $\phi_1(f) = 2^{f(x)}.$

Show that ϕ_1 and ϕ_2 are homomorphisms and determine if they are 1-1 or onto.

$$
\phi_1(f+g) = (f+g)'(x) = f'(x) + g'(x) = \phi_1(f) + \phi_1(g).
$$

$$
\phi_2(f+g) = 2^{(f(x)+g(x))} = 2^{f(x)} \cdot 2^{(g(x))} = \phi_2(f) \cdot \phi_2(g).
$$

 ϕ_1 is not 1-1 because $\phi_1(f) = \phi_1(g) \Longrightarrow f'(x) = g'(x)$, but that only implies that $f(x) = g(x) + C$, not $f(x) = g(x)$. ϕ_1 is onto because given any $g(x) \in F_2$, by the fundamental theorem of Calculus, if $f(x) = \int_0^x g(t) dt$, then $\phi_1(f) = f'(x) = g(x)$.

 ϕ_2 is 1-1 because $\phi_2(f) = \phi_2(g) \Longrightarrow 2^{f(x)} = 2^{g(x)} \Longrightarrow f = g.$ ϕ_2 is not onto since $\phi_1(f) = 2^{f(x)} > 0$. So, for example, $g(x) = -1$ is not in the image of ϕ_2 .

Def: Let $A \subseteq X$, $B \subseteq Y$, $\phi: X \to Y$. The **image** $\phi[A]$ of A in Y under ϕ is $\{\phi(a) | a \in A\}.$ $\phi[X]$ is the **range** of ϕ . The **inverse image** $\phi^{-1}[B]$ of B in X is $\{x \in X | \phi(x) \in B\}.$

Theorem: Let $\boldsymbol{\phi}$ be a homomorphism of a group G into a group $G'.$

- 1) If e is the identity element in G then $\phi(e) = e'$, the identity element of G' .
- 2) If $a \in G$, then $\phi(a^{-1}) = (\phi(a))^{-1}$.
- 3) If H is a subgroup of G, then $\phi[H]$ is a subgroup of $G'.$
- 4) If K' is a subgroup of $G' \cap \phi[G]$, then $\phi^{-1}[K']$ is a subgroup of $G.$

So ϕ preserves the identity, inverses, and subgroups.

Proof 1,2 and 3:

1) $\phi(a) = \phi(ae) = \phi(a)\phi(e)$. Multiply both sides by $(\phi(a))^{-1}$. $e' = \phi(e).$

2)
$$
e' = \phi(e) = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}).
$$

\nMultiply by $(\phi(a))^{-1}$ on the left $\Rightarrow (\phi(a))^{-1} = \phi(a^{-1}).$

3)
$$
H \le G
$$
. Let $\phi(a), \phi(b) \in \phi[H]$.
\n
$$
\phi(a)\phi(b) = \phi(ab) \in \phi[H]
$$
, so $\phi[H]$ is closed under multiplication.
\nBy 2, $\phi(a^{-1}) = (\phi(a))^{-1} \implies (\phi(a))^{-1} \in \phi[H]$

so $\phi[H] \leq G'.$

Notice that $\{e'\}$ is a subgroup of G' , so $\phi^{-1}(e')$ is a subgroup of $G.$

Def. Let ϕ : $G \rightarrow G'$ be a homomorphism of groups.

The subgroup $\boldsymbol{\phi}^{-1}(e') = \{x \in G \mid \boldsymbol{\phi}(x) = e'\}$ is the **kernel** of $\boldsymbol{\phi}$, denoted $ker(\phi)$.

Theorem: Let ϕ : $G \rightarrow G'$ be a group homomorphism, and

let
$$
H = \ker(\phi)
$$
. Let $a \in G$. Then the set:

$$
\phi^{-1}[\phi(a)] = \{x \in G | \phi(x) = \phi(a)\}\
$$

is the left coset aH of H , and is also the right coset Ha of H .

So the two partitions of G into left cosets and into right cosets of H are the same.

Ex. Let F be the group of infinitely differentiable functions on $\mathbb R$ under addition. Let $\phi \colon F \to F$ be the homomorphism $\phi(f) = f'(x)$. What is the kernel of ϕ ?

The identity element of F is the function $f(x) = 0$. So ker $(\phi) = \{ f \in F | \phi(f) = f'(x) = 0 \},$ So ker(ϕ) = { $f \in F$ | $f(x)$ = constant}.

Corollary: A group homomorphism $\phi: G \to G'$ is 1-1 if, and only if, $ker(\phi) = \{e\}.$

Proof: If $\ker(\phi) = \{e\}$ then by our theorem for every $a \in G$, the elements that get mapped to $\phi(a)$ is the coset $a\{e\} = \{a\}$. Thus ϕ is 1-1.

If ϕ is 1-1, we know $\phi(e)=e'$ so e is the only element that gets mapped to e' and hence, $\ker(\phi) = e$.

So when we want to prove $\phi: G \to G'$ is an isomorphism:

Step 1: Show ϕ is a homomorphism.

- Step 2: Show $\ker(\phi) = \{e\}$ (which implies ϕ is 1-1)
- Step 3: Show ϕ is onto.

Our theorem shows that the kernel of a homomorphism is a subgroup whose left cosets and right cosets coincide, $gH = Hg$ for all $g \in G$.

Def. A subgroup H of a group G is **normal** if its left and right cosets coincide, i.e. $gH = Hg$ for all $g \in G$.

Corollary: If ϕ : $G \rightarrow G'$ is a group homomorphism, then $\ker(\phi)$ is a normal subgroup of \tilde{G} .

Notice also that for any abelian group G , any subgroup H is a normal subgroup.

Ex. Suppose $\phi: \mathbb{Z} \to \mathbb{Z}_{12}$ is a homomorphism with $\phi(1) = 9$. Find a) $\text{ker}(\phi)$ and b) $\phi(19)$.

a)
$$
\phi(1) = 9
$$

\n $\phi(2) = \phi(1 + 1) = \phi(1) + \phi(1) = (9 + 9) \pmod{12} = 6$
\n $\phi(3) = \phi(1 + 2) = \phi(1) + \phi(2) = (9 + 6) \pmod{12} = 3$
\n $\phi(4) = \phi(1 + 3) = \phi(1) + \phi(3) = (9 + 3) \pmod{12} = 0$
\nso $4 \in \text{ker}(\phi)$.

But notice:

$$
\phi(4+4) = \phi(4) + \phi(4) = 0
$$

\n
$$
\phi(4+4+4) = \phi(4) + \phi(4) + \phi(4) = 0
$$

\netc, so any multiple of 4 is in ker(ϕ).
\nker(ϕ) is a subgroup of Z, so it must be of the form nZ.
\nSo ker(ϕ) = 4Z.

b)
$$
\phi(19) = \phi(16 + 3) = \phi(16) + \phi(3) = 0 + 3 = 3.
$$

\nOr we could say:
\n $\phi(19) = \phi(1 + 1 + \dots + 1) = 19(\phi(1))$
\n $= 19(9) \pmod{12}$
\n $= 171 \pmod{12} = 3.$

Ex. Find all homomorphisms from $\mathbb Z$ into $\mathbb Z_3$.

 A homomorphism is completely defined by that it does to a generator of a cyclic group. So we just need to find $\phi(1)$.

There are three possibilities:

 $\phi(1) = 0$ in which case $\phi(n) = 0$, $\phi(1) = 1$ in which case $\phi(n) = n \pmod{3}$, or $\phi(1) = 2$ in which case $\phi(n) = 2n \pmod{3}$.

So there are only three different homomorphisms from $\mathbb Z$ to $\mathbb Z_3$.

Ex. Show that A_n , the alternating group on n letters (i.e. the even permutations in S_n) is a normal subgroup of S_n .

We saw earlier that

$$
\phi: S_n \to \mathbb{Z}_2 \text{ by } \phi(\sigma) = 0 \text{ if } \sigma \text{ is even}
$$

$$
= 1 \text{ if } \sigma \text{ is odd}
$$

is a homomorphism.

ker $\phi = A_n$, thus A_n is a normal subgroup of S_n .