Finitely Generated Abelian Groups

Def. The **cartesian product** of sets $S_1, ..., S_n$ is the set of all ordered *n*-tuples $(a_1, ..., a_n)$, where $a_i \in S_i$ for $i = 1, 2, ..., n$. We write:

$$
S_1 \times S_2 \times ... \times S_n
$$
 or $\prod_{i=1}^n S_i$

Theorem: Let $G_1, G_2, ..., G_n$ be groups. For $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ in $\prod_{i=1}^n G_i$ $i=1$ define $(a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n) = (a_1b_1, a_2b_2, ..., a_nb_n).$ Then $\prod_{i=1}^n G_i$ $_{i=1}^{n}$ G_{i} is a group, the **direct product of the groups** $\boldsymbol{G}_{\boldsymbol{i}}$ **,** under this multiplication.

Proof: The $\prod_{i=1}^n G_i$ $\frac{n}{i=1}$ G_i is closed under this multiplication and the multiplication is associative because each component is.

 $(e_1, e_2, ..., e_n)$ is the identity element of $\prod_{i=1}^n G_i$ $_{i=1}^{n}$ G_{i} , where e_{i} is the identity element of $G_i.$

$$
(a_1^{-1}, a_2^{-1}, \dots, a_n^{-1})
$$
 is the inverse of (a_1, a_2, \dots, a_n) .

When all of the G_i 's are abelian groups, additive notation is sometimes used and $\prod_{i=1}^n G_i$ $_{i=1}^{n}$ G_{i} is referred to as the direct sum of the groups G_{i} and is written $G_1 \oplus G_2 \oplus ... \oplus G_n$. The direct product (or sum) of abelian groups is also abelian.

Notice that if $|G_i|=r_i$ for $i=1,...,n$ then $\ \|\prod_{i=1}^n G_i\|$ $\binom{n}{i-1} G_i$ = $(r_1)(r_2) ... (r_n)$. Ex. Let $G = \mathbb{Z}_3 \times \mathbb{Z}_2$ which has $(3)(2) = 6$ elements:

 $(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$, $(2,0)$ and $(2,1)$.

Notice that $\mathbb{Z}_3 \times \mathbb{Z}_2$ is a cyclic group because $(1,1)$ generates the group:

$$
1(1, 1) = (1, 1)
$$

\n
$$
2(1, 1) = (1, 1) + (1, 1) = (2, 0)
$$

\n
$$
3(1, 1) = (1, 1) + (1, 1) + (1, 1) = (0, 1)
$$

\n
$$
4(1, 1) = (1, 0)
$$

\n
$$
5(1, 1) = (2, 1)
$$

\n
$$
6(1, 1) = (0, 0).
$$

Up to an isomorphism there is only one cyclic group of order n, \mathbb{Z}_n . So $\mathbb{Z}_3 \times \mathbb{Z}_2$ is isomorphic to \mathbb{Z}_6 . This isomorphism, ϕ , can be generated by $\phi(1,1) = 1$ (since $(1,1)$ generates $\mathbb{Z}_3 \times \mathbb{Z}_2$ and 1 generates \mathbb{Z}_6).

Ex. Show $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ is not isomorphic to the cyclic group \mathbb{Z}_{16} .

It is true that $|G| = 16 = |Z_{16}|$, but for G to be cyclic we would need to find an element of $\mathbb{Z}_4 \times \mathbb{Z}_4$ which has order 16. But for any $a \in \mathbb{Z}_4$, $a + a + a + a = 0$ in \mathbb{Z}_4 . So any element of $\mathbb{Z}_4 \times \mathbb{Z}_4$, (a, b) has at most order 4.

Thus $\mathbb{Z}_4 \times \mathbb{Z}_4$ is not a cyclic group. In particular, $\mathbb{Z}_4 \times \mathbb{Z}_4$ is **not** isomorphic to \mathbb{Z}_{16} .

Theorem: The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and isomorphic to \mathbb{Z}_{mn} if, and only if, m and *n* are relatively prime (i.e. $GCD(m, n) = 1$).

Proof: If *m* and *n* are relatively prime the order of $(1,1)$ is *mn* since the first component is 0 whenever it is multiplied by a multiple of m and the second is 0 when multiplied by a multiple of n .

If $GCD(m, n) = 1$, then the smallest multiple that make both components 0 is mn .

Since $|\Z_m\times\Z_n|=mn$, (1, 1) generates $\Z_m\times\Z_n$ and $\Z_m\times\Z_n$ is cyclic.

To show $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic implies $GCD(m, n) = 1$ we show that if $GCD(m, n) \neq 1$ then $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic.

Suppose $GCD(m, n) = d > 1$ then $\frac{mn}{n}$ $\frac{dn}{d}$ is divisible by m and n , thus $m n$ \boldsymbol{d} $(r, s) = (r, s) + (r, s) + \cdots + (r, s) = (0, 0)$ for any element $(r, s) \in \mathbb{Z}_m \times \mathbb{Z}_n$. So the order of (r, s) is less than mn .

Thus $\mathbb{Z}_m \times \mathbb{Z}_n$ does not have an element that generates the entire group and $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic.

Corollary: The group $\prod_{i=1}^n \mathbb{Z}_{m_i}$ $\frac{n}{i=1}\, \mathbb{Z}_{m_{\widetilde{t}}}$ is cyclic and isomorphic to $\mathbb{Z}_{m_1\cdot m_2\cdot\cdot\cdot m_n}$ if, and only if, the natural numbers $m_i, i=1,...,n$ are such that the GCD of any two numbers is 1.

Ex. Suppose $n=(p_{1})^{m_{1}}(p_{2})^{m_{2}}$... $(p_{r})^{m_{r}}$ where p_{i} , $i=1,...,r$ are distinct prime numbers and m_i , $i=1,...,r$, are positive integers then the previous corollary shows:

 \mathbb{Z}_n is isomorphic to $\mathbb{Z}_{(p_1)^{m_1}} \times \mathbb{Z}_{(p_2)^{m_2}} \times ... \times \mathbb{Z}_{(p_n)^{m_n}}$. In particular if $n=360=2^3\times 3^2\times 5$, then \mathbb{Z}_{360} is isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_5$.

Def. Let $r_1, r_2, ..., r_n$ be positive integers. The **least common multiple** (LCM) is the smallest positive integer that is a multiple of each r_i , $i=1,...,n$.

To find the *LCM*, prime factor each number and take the highest power of each prime factor present in any of the numbers and multiply them.

Ex. Find $LCM(5, 12, 18)$.

 $5 = 5^1$, $12 = 2^2 \times 3$, $18 = 2 \times 3^2$ $LCM = 2^2 \times 3^2 \times 5 = 180.$

Notice that the *LCM* is the generator of the cyclic group of all common multiples of $r_1, ..., r_n$.

Ex. Find the cyclic group of all common multiples of 5, 12, and 18 (i.e. 5, 12, and 18 divide all elements of this group).

180 \mathbb{Z} , since $LCM(5, 12, 18) = 180$.

Theorem: Let
$$
(a_1, a_2, ..., a_n) \in \prod_{i=1}^n G_i
$$
.
If a_i is of finite order r_i in G_i , then the order of
 $(a_1, a_2, ..., a_n) \in \prod_{i=1}^n G_i$ is equal to the *LCM* of the r_i 's.

Proof: For
$$
(a_1, a_2, ..., a_n)^k = (e_1, e_2, ..., e_n)
$$
, k must be a multiple of r_i for $i = 1, ..., n$.

The smallest power for that to be true is $\mathit{LCM}(r_1, ..., r_n)$.

Ex. Find the order of $(6, 10, 16)$ in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.

The order of 6 in
$$
\mathbb{Z}_{16}
$$
 is $\frac{16}{GCD(6,16)} = \frac{16}{2} = 8$
\nThe order of 10 in \mathbb{Z}_{60} is $\frac{60}{GCD(10,60)} = \frac{60}{10} = 6$
\nThe order of 16 in \mathbb{Z}_{24} is $\frac{24}{GCD(16,24)} = \frac{24}{8} = 3$.
\nSo the order of (6, 10, 16) in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$ is the *LCM*(8, 6, 3).
\n $8 = 2^3, \quad 6 = 2 \times 3, \quad 3 = 3$
\n*LCM*(8, 6, 3) = 2³ × 3 = 24.

So the order of $(6, 10, 16)$ in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$ is 24.

Ex. What is the largest order among orders of all cyclic subgroups of

 $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$? Find an element that generates a cyclic subgroup of that order.

Let $(a, b, c) \in \mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.

The order of (a, b, c) is the ${\it LCM}$ of the orders of in a, b, c in \mathbb{Z}_9 , \mathbb{Z}_{12} , and \mathbb{Z}_{15} respectively.

The largest possible order for (a, b, c) is $LCM(9, 12, 15)$.

$$
9 = 3^2
$$
, $12 = 2^2 \times 3$, $15 = 3 \times 5$

So $LCM(9, 12, 15) = 2^2 \times 3^2 \times 5 = 180$.

So the order of the largest cyclic subgroup of $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ is 180.

To find an element of that order, just find an element in \mathbb{Z}_9 of order $3^2=9-e.g.~1$ an element in \mathbb{Z}_{12} of order $2^2=4$ e.g. 3 an element in \mathbb{Z}_{15} of order 5 $e.g. 3$.

So $(1, 3, 3) \in \mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ has order 180 and generates a cyclic group of that order.

Notice that $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ is not isomorphic to $\mathbb{Z}_{(9)(12)(15)} = \mathbb{Z}_{(1620)}$ because there is no element in $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ of order 1620.

Fundamental Theorem of Finitely Generated Abelian Groups:

Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form:

$$
\mathbb{Z}_{(p_1)^{r_1}} \times \mathbb{Z}_{(p_2)^{r_2}} \times \ldots \times \mathbb{Z}_{(p_n)^{r_n}} \times \mathbb{Z} \times \ldots \times \mathbb{Z}
$$

where p_i are primes, not necessarily distinct, and the r_i are positive integers.

Ex. Find all abelian groups, up to isomorphism, of order 540.

 $540 = 2^2 \times 3^3 \times 5.$

By the previous theorem we get:

$$
G_1 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5
$$

\n
$$
G_2 = \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5
$$

\n
$$
G_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5
$$

\n
$$
G_4 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{27} \times \mathbb{Z}_5
$$

\n
$$
G_5 = \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5
$$

\n
$$
G_6 = \mathbb{Z}_4 \times \mathbb{Z}_{27} \times \mathbb{Z}_5.
$$