Finitely Generated Abelian Groups

Def. The **cartesian product** of sets $S_1, ..., S_n$ is the set of all ordered *n*-tuples $(a_1, ..., a_n)$, where $a_i \in S_i$ for i = 1, 2, ..., n. We write:

$$S_1 \times S_2 \times ... \times S_n$$
 or $\prod_{i=1}^n S_i$

Theorem: Let $G_1, G_2, ..., G_n$ be groups. For $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ in $\prod_{i=1}^n G_i$ define $(a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n) = (a_1b_1, a_2b_2, ..., a_nb_n)$. Then $\prod_{i=1}^n G_i$ is a group, the **direct product of the groups** G_i , under this multiplication.

Proof: The $\prod_{i=1}^{n} G_i$ is closed under this multiplication and the multiplication is associative because each component is.

 (e_1, e_2, \dots, e_n) is the identity element of $\prod_{i=1}^n G_i$, where e_i is the identity element of G_i .

$$(a_1^{-1}, a_2^{-1}, \dots, a_n^{-1})$$
 is the inverse of (a_1, a_2, \dots, a_n) .

When all of the G_i 's are abelian groups, additive notation is sometimes used and $\prod_{i=1}^{n} G_i$ is referred to as the direct sum of the groups G_i and is written $G_1 \bigoplus G_2 \bigoplus \ldots \bigoplus G_n$. The direct product (or sum) of abelian groups is also abelian.

Notice that if $|G_i| = r_i$ for i = 1, ..., n then $|\prod_{i=1}^n G_i| = (r_1)(r_2) ... (r_n)$.

Ex. Let $G = \mathbb{Z}_3 \times \mathbb{Z}_2$ which has (3)(2) = 6 elements:

(0,0), (0,1), (1,0), (1,1), (2,0) and (2,1).

Notice that $\mathbb{Z}_3 \times \mathbb{Z}_2$ is a cyclic group because (1, 1) generates the group:

$$1(1,1) = (1,1)$$

$$2(1,1) = (1,1) + (1,1) = (2,0)$$

$$3(1,1) = (1,1) + (1,1) + (1,1) = (0,1)$$

$$4(1,1) = (1,0)$$

$$5(1,1) = (2,1)$$

$$6(1,1) = (0,0).$$

Up to an isomorphism there is only one cyclic group of order n, \mathbb{Z}_n . So $\mathbb{Z}_3 \times \mathbb{Z}_2$ is isomorphic to \mathbb{Z}_6 . This isomorphism, ϕ , can be generated by $\phi(1,1) = 1$ (since (1,1) generates $\mathbb{Z}_3 \times \mathbb{Z}_2$ and 1 generates \mathbb{Z}_6).

Ex. Show $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ is not isomorphic to the cyclic group \mathbb{Z}_{16} .

It is true that $|G| = 16 = |\mathbb{Z}_{16}|$, but for G to be cyclic we would need to find an element of $\mathbb{Z}_4 \times \mathbb{Z}_4$ which has order 16. But for any $a \in \mathbb{Z}_4$, a + a + a + a = 0 in \mathbb{Z}_4 . So any element of $\mathbb{Z}_4 \times \mathbb{Z}_4$, (a, b) has at most order 4.

Thus $\mathbb{Z}_4 \times \mathbb{Z}_4$ is not a cyclic group. In particular, $\mathbb{Z}_4 \times \mathbb{Z}_4$ is **not** isomorphic to \mathbb{Z}_{16} .

Theorem: The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and isomorphic to \mathbb{Z}_{mn} if, and only if, m and n are relatively prime (i.e. GCD(m, n) = 1).

Proof: If m and n are relatively prime the order of (1,1) is mn since the first component is 0 whenever it is multiplied by a multiple of m and the second is 0 when multiplied by a multiple of n.

If GCD(m, n) = 1, then the smallest multiple that make both components 0 is mn.

Since $|\mathbb{Z}_m \times \mathbb{Z}_n| = mn$, (1, 1) generates $\mathbb{Z}_m \times \mathbb{Z}_n$ and $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic.

To show $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic implies GCD(m, n) = 1 we show that if $GCD(m, n) \neq 1$ then $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic.

Suppose GCD(m, n) = d > 1 then $\frac{mn}{d}$ is divisible by m and n, thus $\frac{mn}{d}(r, s) = (r, s) + (r, s) + \dots + (r, s) = (0, 0)$ for any element $(r, s) \in \mathbb{Z}_m \times \mathbb{Z}_n$. So the order of (r, s) is less than mn.

Thus $\mathbb{Z}_m \times \mathbb{Z}_n$ does not have an element that generates the entire group and $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic.

Corollary: The group $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic and isomorphic to $\mathbb{Z}_{m_1 \cdot m_2 \cdots m_n}$ if, and only if, the natural numbers m_i , i = 1, ..., n are such that the GCD of any two numbers is 1. Ex. Suppose $n = (p_1)^{m_1} (p_2)^{m_2} \dots (p_r)^{m_r}$ where p_i , $i = 1, \dots, r$ are distinct prime numbers and m_i , $i = 1, \dots, r$, are positive integers then the previous corollary shows:

 \mathbb{Z}_n is isomorphic to $\mathbb{Z}_{(p_1)^{m_1}} \times \mathbb{Z}_{(p_2)^{m_2}} \times ... \times \mathbb{Z}_{(p_n)^{m_n}}$. In particular if $n = 360 = 2^3 \times 3^2 \times 5$, then \mathbb{Z}_{360} is isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_5$.

Def. Let $r_1, r_2, ..., r_n$ be positive integers. The **least common multiple** (**LCM**) is the smallest positive integer that is a multiple of each $r_i, i = 1, ..., n$.

To find the *LCM*, prime factor each number and take the highest power of each prime factor present in any of the numbers and multiply them.

Ex. Find LCM(5, 12, 18).

 $5 = 5^{1}$, $12 = 2^{2} \times 3$, $18 = 2 \times 3^{2}$ $LCM = 2^{2} \times 3^{2} \times 5 = 180$.

Notice that the *LCM* is the generator of the cyclic group of all common multiples of r_1, \ldots, r_n .

Ex. Find the cyclic group of all common multiples of 5, 12, and 18 (i.e. 5, 12, and 18 divide all elements of this group).

 $180\mathbb{Z}$, since LCM(5, 12, 18) = 180.

Theorem: Let $(a_1, a_2, ..., a_n) \in \prod_{i=1}^n G_i$. If a_i is of finite order r_i in G_i , then the order of $(a_1, a_2, ..., a_n) \in \prod_{i=1}^n G_i$ is equal to the *LCM* of the r_i 's.

Proof: For $(a_1, a_2, ..., a_n)^k = (e_1, e_2, ..., e_n)$, k must be a multiple of r_i for i = 1, ..., n.

The smallest power for that to be true is $LCM(r_1, ..., r_n)$.

Ex. Find the order of (6, 10, 16) in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.

The order of 6 in \mathbb{Z}_{16} is $\frac{16}{GCD(6,16)} = \frac{16}{2} = 8$ The order of 10 in \mathbb{Z}_{60} is $\frac{60}{GCD(10,60)} = \frac{60}{10} = 6$ The order of 16 in \mathbb{Z}_{24} is $\frac{24}{GCD(16,24)} = \frac{24}{8} = 3$. So the order of (6, 10, 16) in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$ is the *LCM*(8, 6, 3). $8 = 2^3, \quad 6 = 2 \times 3, \quad 3 = 3$ $LCM(8, 6, 3) = 2^3 \times 3 = 24$.

So the order of (6, 10, 16) in $\mathbb{Z}_{16} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$ is 24.

Ex. What is the largest order among orders of all cyclic subgroups of

 $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$? Find an element that generates a cyclic subgroup of that order.

Let $(a, b, c) \in \mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.

The order of (a, b, c) is the *LCM* of the orders of in a, b, c in \mathbb{Z}_9 , \mathbb{Z}_{12} , and \mathbb{Z}_{15} respectively.

The largest possible order for (a, b, c) is LCM(9, 12, 15).

$$9 = 3^2$$
, $12 = 2^2 \times 3$, $15 = 3 \times 5$

So $LCM(9, 12, 15) = 2^2 \times 3^2 \times 5 = 180$.

So the order of the largest cyclic subgroup of $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ is 180.

To find an element of that order, just find an element in \mathbb{Z}_9 of order $3^2 = 9$ *e.g.* 1 an element in \mathbb{Z}_{12} of order $2^2 = 4$ *e.g.* 3

an element in \mathbb{Z}_{15} of order 5 e.g.3.

So $(1, 3, 3) \in \mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ has order 180 and generates a cyclic group of that order.

Notice that $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ is not isomorphic to $\mathbb{Z}_{(9)(12)(15)} = \mathbb{Z}_{(1620)}$ because there is no element in $\mathbb{Z}_9 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ of order 1620. Fundamental Theorem of Finitely Generated Abelian Groups:

Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form:

$$\mathbb{Z}_{(p_1)^{r_1}} \times \mathbb{Z}_{(p_2)^{r_2}} \times \ldots \times \mathbb{Z}_{(p_n)^{r_n}} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$$

where p_i are primes, not necessarily distinct, and the r_i are positive integers.

Ex. Find all abelian groups, up to isomorphism, of order 540.

 $540 = 2^2 \times 3^3 \times 5.$

By the previous theorem we get:

$$G_{1} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$G_{2} = \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$G_{3} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$G_{4} = \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{27} \times \mathbb{Z}_{5}$$

$$G_{5} = \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$$

$$G_{6} = \mathbb{Z}_{4} \times \mathbb{Z}_{27} \times \mathbb{Z}_{5}.$$