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Cosets and Lagrange’s Theorem  

 

Def.  Let 𝐻 be a subgroup of 𝐺. The subset 𝑎𝐻 = {𝑎ℎ| ℎ ∈ 𝐻}, where 𝑎 ∈ 𝐺 

         is called the left coset of 𝐻 containing 𝑎.    

         The subset 𝐻𝑎 = {ℎ𝑎| ℎ ∈ 𝐻}, where 𝑎 ∈ 𝐺 is called the right coset of 𝐻 

        containing 𝑎.  

 

Ex.   Find the left cosets and right cosets of the subgroup 4ℤ of ℤ.  

 

          4ℤ = {… , −12, −8, −4, 0, 4, 8, 12, … }.  

            The left coset containing 𝑚 ∈ ℤ is set 

        𝑚 + 4ℤ = {… , 𝑚 − 12, 𝑚 − 8, 𝑚 − 4, 𝑚, 𝑚 + 4, 𝑚 +  8, 𝑚 +  12, … }  

𝑚 = 0:     0 + 4ℤ = {… , −12, −8, −4, 0, 4, 8, 12, … } 

𝑚 = 1:    1 + 4ℤ  = {… ,1 − 12, 1 − 8, 1 − 4, 1, 1 +  4, 1 + 8, 1 + 12, … } 

                                  = {… , −11, −7, −3, 1 , 5, 9, 13, … } 

𝑚 = 2:     2 + 4ℤ = {… , −10, −6, −2, 2, 6, 10, 14, … } 

𝑚 = 3:     3 + 4ℤ = {… , −9, −5, −1, 3, 7, 11, 15, … } 

𝑚 = 4:     4 + 4ℤ = {… , −12, −8, −4, 0, 4, 8, 12, … } 

So the left cosets start repeating. Thus there are 4 distinct left cosets: 

4ℤ,   1 + 4ℤ,   2 + 4ℤ,   and 3 + 4ℤ.  

 

Notice that cosets are either identical to another coset or disjoint (they have no 

common elements) and the union of the disjoint cosets is exactly the group ℤ. This 

is a feature of all cosets of a subgroup. This is called a partition of a group into the 

cosets of a subgroup. The cosets 𝑎𝐻 and 𝑏𝐻 will either be the same               

(e.g. 0 + 4ℤ and 4 + 4ℤ) or disjoint (e.g. (0 + 4ℤ) ∩ (1 + 4ℤ) = 𝜙) and the 

union of all disjoint cosets is the original set 𝐺. 
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Notice that ℤ, + is an abelian group.  Thus the left coset 𝑚 + 4ℤ and the right 

coset 4ℤ + 𝑚 are the same sets. So all of the left cosets are the same as the right 

cosets. If 𝐺 is not abelian 𝑎𝐻 need not be the same as 𝐻𝑎 (although it might be). 

 

Ex.   Find the partition of ℤ6 into cosets of the subgroup 𝐻 = {0,3}. 

 

 Left (or right since ℤ6 is abelian) cosets of 𝐻 will be of the form: 

 𝑚 + 𝐻 where 𝑚 ∈ ℤ6. 

𝑚 = 0:    0 + 𝐻 = {0, 3} = 𝐻    (the set 𝐻 is always a coset associated 

                                    with the identity element in G) 

𝑚 = 1:    1 + 𝐻 = {1, 4} 

𝑚 = 2:    2 + 𝐻 = {2, 5} 

𝑚 = 3:    3 + 𝐻 = {3, 0} = {0, 3} = 𝐻 

𝑚 = 4:    4 + 𝐻 = {4, 1} = 1 + 𝐻 

𝑚 = 5:    5 + 𝐻 = {4, 2} = 2 + 𝐻  

 

So  0 + 𝐻, 1 + 𝐻, 2 + 𝐻 are the three distinct and disjoint cosets of 𝐻 and 

notice that:  

ℤ6 = {0 + 𝐻} ∪ {1 + 𝐻} ∪ {2 + 𝐻} = {0,3} ∪ {1, 4} ∪ {2, 5}. 

 

Notice that all of the cosets of 𝐻 have the same number of elements as 𝐻. This 

is always the case. 
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Ex.   Let 𝐺 = 𝑆3 and 𝐻 be the subgroup {𝜌0, 𝜇2} where: 

𝜌0 = (
1 2 3
1 2 3

)   𝜇1 = (
1 2 3
1 3 2

) 

 𝜌1 = (
1 2 3
2 3 1

)   𝜇2 = (
1 2 3
3 2 1

) 

       𝜌2 = (
1 2 3
3 1 2

)   𝜇3 = (
1 2 3
2 1 3

) 

Find the partitions of 𝑆3 into left cosets and right cosets.  

 

Left cosets:       𝐻 = {𝜌0, 𝜇2}  

  𝜌1𝐻 = {𝜌1𝜌0, 𝜌1𝜇2} = {𝜌1, 𝜇1}  

   Since  𝜌1𝜇2 = (
1 2 3
2 3 1

) (
1 2 3
3 2 1

) = (
1 2 3
1 3 2

) = 𝜇1  

 

           𝜌2𝐻 = {𝜌2𝜌0, 𝜌2𝜇2} = {𝜌2, 𝜇3} 

 Since 𝜌2𝜇2 = (
1 2 3
3 1 2

) (
1 2 3
3 2 1

) = (
1 2 3
2 1 3

) = 𝜇3  

 

 Notice  𝜇1𝐻 = {𝜌1, 𝜇1} since 

 𝜇1𝜇2 = (
1 2 3
1 3 2

) (
1 2 3
3 2 1

) = (
1 2 3
2 3 1

) = 𝜌1 

 𝜇2𝐻 = {𝜌0, 𝜇2} since  

 𝜇2
2 = (

1 2 3
3 2 1

) (
1 2 3
3 2 1

) = (
1 2 3
1 2 3

) = 𝜌0 

 and 𝜇3𝐻 = { 𝜌2, 𝜇3} since 

 𝜇3𝜇2= (
1 2 3
2 1 3

) (
1 2 3
3 2 1

) = (
1 2 3
3 1 2

) =  𝜌2   

 

 So  𝑆3 = {𝜌0, 𝜌1, 𝜌2, 𝜇1, 𝜇2, 𝜇3} = {𝜌0, 𝜇2} ∪ {𝜌1, 𝜇1} ∪ {𝜌2, 𝜇3}. 
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The right cosets are: 

𝐻 = {𝜌0, 𝜇2},    𝐻𝜌1 = {𝜌0𝜌1, 𝜇2𝜌1} = {𝜌1, 𝜇3},     𝐻𝜌2 = {𝜌0𝜌2, 𝜇2𝜌2} = {𝜌2, 𝜇1}  

and 𝑆3 = {𝜌0, 𝜌1, 𝜌2, 𝜇1, 𝜇2, 𝜇3} = {𝜌0, 𝜇2} ∪ {𝜌1, 𝜇3} ∪ {𝜌2, 𝜇1}.  

 

Notice that the right cosets apart from 𝐻 are different from the left cosets. 

However, the number of left cosets is the same as the number of right cosets (which 

will always be the case) and the number of elements in any coset is the same as the 

number of elements in 𝐻. 

 

Lagrange’s Theorem: Let 𝐻 be a subgroup of a finite group 𝐺. Then the order of 𝐻 

is a divisor of the order of 𝐺.  

 

This follows from the fact that the cosets (left or right) form a partition of 𝐺 (i.e. 𝐺 
is the union of disjoint cosets) and each coset has the same number of elements as 

𝐻. 

All cosets have the same number of elements as 𝐻 because: 

𝜙: 𝐻 → 𝑔𝐻;   𝑔 ∈ 𝐺 by 

𝜙(ℎ) = 𝑔ℎ is 1-1 and onto.  

 

It’s 1-1 because if:                 𝜙(ℎ1) = 𝜙(ℎ2) 

                                                   𝑔ℎ1 = 𝑔ℎ2 

                                             𝑔−1𝑔ℎ1 = 𝑔−1𝑔ℎ2 

                                                        ℎ1 = ℎ2. 

 

It's onto because given any element 𝑔ℎ ∈ 𝑔𝐻,   𝜙(ℎ) = 𝑔ℎ. 
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Corollary:  If |𝐺| = 𝑝, a prime number, then 𝐺 is cyclic.   

 

Proof:   Assume |𝐺| = 𝑝, a prime number. 

   Let 𝑎 ∈ 𝐺 with 𝑎 ≠ 𝑒. 

 Then the cyclic subgroup generated by 𝑎, < 𝑎 > has at least 2 

 elements, 𝑎 and 𝑒. By Lagrange’s Theorem the order of < 𝑎 > 

 must divide  |𝐺| = 𝑝. That means |< 𝑎 >| = 𝑝 and 𝐺 is cyclic. 

 

Theorem:  The order of an element of a finite group divides the order of the group 

  

Proof: The order of an element 𝑎 ∈ 𝐺 is the order of the cyclic  

 subgroup generated by 𝑎.                                                                            

          Thus by Lagrange’s Theorem the order of 𝑎 must divide the order of 𝐺.  

 

Def.   𝐻 ≤ 𝐺. The number of left (or right) cosets of 𝐻 in 𝐺 is the index  

         of 𝐻 in 𝐺, written (𝐺: 𝐻).   

 

Ex.   Let 𝐺 = 𝑆3 and 𝐻 = {𝜌0, 𝜇2}. The number of cosets of 𝐻 in 𝐺 was 3 

 (which equals 
|𝐺|

|𝐻|
).  So the index of 𝐻 in 𝐺 is 3. 

 

The index of 𝐻 in 𝐺 may be finite or infinite.  However, If 𝐺 is finite then: 

                                                (𝐺: 𝐻) =  
|𝐺|

|𝐻|
 . 
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Ex.  Let 𝐺 = ℤ and 𝐻 = 4ℤ. As we saw earlier, 𝐻 has 4 cosets in ℤ so  

       (𝐺: 𝐻) = 4. 

 

Ex.   Let 𝐺 = ℝ and 𝐻 = ℤ, then (𝐺: 𝐻) is infinite since 𝑚√2 + ℤ are  

        distinct cosets when 𝑚 ∈ ℤ and 𝑚√2 ∈ ℝ. 


