Cosets and Lagrange's Theorem- HW Problems

Find all cosets of the subgroup H of the group G.

- 1. $H = 6\mathbb{Z}$, $G = 2\mathbb{Z}$.
- 2. H = < 3 >, $G = \mathbb{Z}_{18}$

For problems 3-6 find the index of the subgroup H in the group G.

3.
$$H = 6\mathbb{Z}, \quad G = 2\mathbb{Z}.$$

4. $H = < 3 > , \quad G = \mathbb{Z}_{18}$
5. $H = <\sigma >$, where $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 5 & 4 & 3 \end{pmatrix}, \quad G = S_6.$
6. $H = <\sigma >$, where $\sigma = (1, 5, 4, 2)(2, 3) \in S_5, \quad G = S_5.$

7. The dihedral group D_4 has 8 elements.

$\rho_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 2	3 3	$\binom{4}{4}$	$\mu_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2 1	3 4	$\binom{4}{3}$
$ \rho_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} $	-			$\mu_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$	2 3	3 2	4 1
$ \rho_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} $	2 4	3 1	4 2)	$\delta_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 2	3 1	4 4)
$ \rho_3 = \begin{pmatrix} 1 \\ 4 \end{pmatrix} $	2 1	3 2	$\binom{4}{3}$	$\delta_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 4	3 3	4 2)

 $H = \{\rho_0, \mu_1\}$ is a subgroup of D_4 .

a. Find all disjoint left cosets of *H*.

b. Find all disjoint right cosets of *H*.

8. Let *H* be a subgroup of a group *G*. Suppose that $g^{-1}hg \in H$ for all $g \in G$ and $h \in H$. Show that gH = Hg for all $g \in G$.

9. Suppose |G| = pq where p and q are prime numbers. Show every proper subgroup of G is a cyclic group.

10. Show that if |G| = n (ie *G* has finite order) and *e* is the identity element of *G* then $a^n = e$ for all $a \in G$.

11. Suppose H is a subgroup of a group G of index 2. Prove every left coset is a right coset.