Orbits, Cycles, and the Alternating Groups

Find the orbits of the following permutations.

1.	$\begin{pmatrix} 1\\ 3 \end{pmatrix}$	2 4	3 5	4 1	5 2)	
2.	$\begin{pmatrix} 1 \\ 6 \end{pmatrix}$	2 1	3 2	4 5	5 4	$\binom{6}{3}$

Calculate the product of the cycles.

- 3. (1, 3, 4, 6)(2, 5, 7)
- 4. (1, 3)(2, 6, 7)(4, 5, 8)

Use for problems 5-8.

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 5 & 4 & 3 \end{pmatrix}; \qquad \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 5 & 3 & 2 \end{pmatrix}.$

- 5. Write σ and τ as the product of disjoint cycles.
- 6. Write σ and τ as the product of transpositions.
- 7. Calculate the order of σ and τ in S_6 .
- 8. Is σ even or odd? Is τ even or odd?

Use for problems 9-12.

- $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 7 & 2 & 8 & 5 & 3 & 6 \end{pmatrix}.$
- 9. Write σ as the product of disjoint cycles.
- 10. Write σ as the product of transpositions.
- 11. Calculate the order of σ in S_8 .
- 12. Is σ even or odd?
- 13. $S_3 = \{\rho_0, \rho_1, \rho_2, \mu_1, \mu_2, \mu_3\}$ where

$$\rho_{0} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \mu_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \\
\rho_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \mu_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \\
\rho_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad \mu_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \\$$

Identify the elements of A_3 .

14. For $n \ge 2$, let τ be an odd permutation in S_n . Show that every odd permutation μ in S_n can be written as $\mu = \sigma \tau$ where $\sigma \in A_n$.

15. Let *G* be a group and $x \in G$. Show that $\sigma_x: G \to G$ by $\sigma_x(g) = xg$ is a permutation of *G*.