Permutation Groups

Def. A **permutation** of a set A is a function $\phi: A \to A$ that's 1-1 and onto We can think of a permutation as a rearrangement of the elements of A.

Ex. Let $A = \{1, 2, 3, 4, 5\}$. Examples of permutations: $\phi_1(\{1, 2, 3, 4, 5\}) = \{4, 3, 1, 2, 5\}$ $\phi_2(\{1, 2, 3, 4, 5\}) = \{5, 2, 3, 1, 4\}$ ϕ_1 ϕ_2 $1 \rightarrow 4$ $2 \rightarrow 3$ $3 \rightarrow 1$ $4 \rightarrow 2$ $5 \rightarrow 5$ ϕ_1 ϕ_2 $1 \rightarrow 5$ $2 \rightarrow 2$ $3 \rightarrow 1$ $5 \rightarrow 4$

We can form a new permutation by taking the composition of the above permutations: $\phi_2 \circ \phi_1(\{1, 2, 3, 4, 5\})$. This is permutation multiplication.

$\phi_2 \circ \phi_1$	i.e.	$\phi_2\circ\phi_1$
$1 \rightarrow 4 \rightarrow 1$		$1 \rightarrow 1$
$2 \rightarrow 3 \rightarrow 3$		$2 \rightarrow 3$
$3 \rightarrow 1 \rightarrow 5$		$3 \rightarrow 5$
$4 \rightarrow 2 \rightarrow 2$		$4 \rightarrow 2$
$5 \rightarrow 5 \rightarrow 4$		$5 \rightarrow 4$

We can write ϕ_1 and ϕ_2 as:

$$\phi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$
$$\phi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}$$

Then
$$\phi_2 \circ \phi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$.

Theorem: Let A be a nonempty set, and let S_A be the set of permutations of A. Then S_A is a group under permutation multiplication.

Proof:

- 0) S_A is clearly closed under permutation multiplication.
- 1) Permutation multiplication is just a composition of functions and composition of functions is associative so this multiplication is as well.
- 2) The permutation i(a) = a for all $a \in A$ acts as an identity.
- 3) For any permutation σ , σ^{-1} is just the permutation σ in the opposite direction that reverses what σ does.

For example, if $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$ then $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$ thus, $\sigma^{-1} \circ \sigma = i$ and $\sigma \circ \sigma^{-1} = i$. Thus S_A is a group.

We will generally be concerned with S_A where A is a finite set, but that doesn't have to be the case.

Def. Let $A = \{1, 2, ..., n\}$. The group of all permutations of A is called the symmetric group on n letters and is denoted S_n . Note that the number of permutations on n objects is n! Thus, $|S_n| = n$!

Ex. Let's examine S_3 .

$$\begin{aligned} |S_3| &= 3! = 6. \\ \text{Let } \rho_0 &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \mu_1 &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \\ \rho_1 &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} & \mu_2 &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \\ \rho_2 &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} & \mu_3 &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \end{aligned}$$

It's easy (but cumbersome) to check the following multiplication table for S_3 (by taking compositions of these permutations):

	ρ_0	ρ_1	ρ_2	μ_1	μ_2	μ_3
ρ_0	$ ho_0$	$ ho_1$	$ ho_2$	μ_1	μ_2	μ_3
ρ_1	$ ho_1$	$ ho_2$	$ ho_0$	μ_3	μ_1	μ_2
ρ_2	ρ_2	$ ho_0$	$ ho_1$	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	$ ho_0$	$ ho_1$	$ ho_2$
μ_2	μ_2	μ_3	μ_1	$ ho_2$	$ ho_0$	$ ho_1$
μ_3	μ_3	μ_1	μ_2	$ ho_1$	$ ho_2$	$ ho_0$

Notice that S_3 is not abelian (e.g. $\rho_1\mu_1 = \mu_3$ but $\mu_1\rho_1 = \mu_2$). In fact, it's the smallest possible non-abelian group.

There is a natural correspondence between the elements of S_3 and the ways in which 2 copies of an equilateral triangle with vertices 1, 2, 3 can be placed. S_3 is also called D_3 , the 3rd dihedral group (symmetries of an equilateral triangle).

 D_4 is the 4th dihedral group which is the set of permutations of the vertices of a square corresponding to the symmetries of a square. This is called the octic group.

<u>Rotations</u>				<u>Flips</u>			
$ \rho_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	2 2	3 3	4 4)	$\mu_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2 1	3 4	4 3
$\rho_1 = {1 \choose 2}$	2 3	3 4	4 1	$\mu_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$	2 3	3 2	4 1
$\rho_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 4	3 1	4 2)	$\delta_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 2	3 1	4 4
$\rho_3 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$	2 1	3 2	4 3)	$\delta_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 4	3 3	4 2)

Multiplication table for D_4 :

	ρ_0	ρ_1	ρ_2	ρ_3	μ_1	μ_2	δ_1	δ_2
ρ_0	$ ho_0$	$ ho_1$	$ ho_2$	$ ho_3$	μ_1	μ_2	δ_1	δ_2
ρ_1	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_0$	δ_1	δ_2	μ_2	μ_1
ρ_2	$ ho_2$	$ ho_3$	$ ho_0$	$ ho_1$	μ_2	μ_1	δ_2	δ_1
ρ_3	$ ho_3$	$ ho_0$	$ ho_1$	$ ho_2$	δ_2	δ_1	μ_1	μ_2
μ_1	μ_1	δ_2	μ_2	δ_1	$ ho_0$	$ ho_2$	$ ho_3$	$ ho_1$
μ_2	μ_2	δ_1	μ_1	δ_2	$ ho_2$	$ ho_0$	$ ho_1$	$ ho_3$
δ_1	δ_1	μ_1	δ_2	μ_2	$ ho_1$	$ ho_3$	$ ho_0$	$ ho_2$
δ_2	δ_2	μ_2	δ_1	μ_1	$ ho_3$	$ ho_1$	$ ho_2$	$ ho_0$

 D_4 is non-abelian.

Ex. Consider the following permutations in S_6 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 4 & 2 & 5 \end{pmatrix}.$$

Calculate $\sigma \tau^{-2}$ and σ^{66} .

First calculate au^{-1} :

$$\begin{split} \tau^{-1} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 4 & 6 & 1 \end{pmatrix}.\\ \tau^{-2} &= \tau^{-1} \tau^{-1} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 4 & 6 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 4 & 6 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 4 & 1 & 3 \end{pmatrix}.\\ \sigma\tau^{-2} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 4 & 1 & 3 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 6 & 4 & 2 \end{pmatrix}.\\ \sigma^{2} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 3 & 5 & 4 & 1 \end{pmatrix}.\\ \sigma^{3} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 3 & 5 & 4 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 1 & 6 & 4 \end{pmatrix}.\\ \sigma^{4} &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} .\\ &So \ \sigma^{4} &= i.\\ \implies \sigma^{4k} &= i.\\ \end{cases}$$

Def. The **orbit** of *a* under σ is the set $\{\sigma^n(a) \mid n \in \mathbb{Z}\}$.

Ex. Find the orbit of 5 under σ for the previous example.

$$\sigma(5) = 1, \quad \sigma^2(5) = \sigma(1) = 4, \quad \sigma^3(5) = \sigma(4) = 6,$$

 $\sigma^4(5) = \sigma(6) = 5.$
Orbit(5) = {5,1,4,6}.

Ex. Find the number of elements in the set $\{\sigma \in S_5 | \sigma(2) = 5\}$.

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a & 5 & b & c & d \end{pmatrix}$ The number of elements is the same as the number of elements of S_4 so the number of elements is 4! = 24.

Ex. Show that S_5 is non-abelian by finding 2 permutations that don't commute.

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$$

$$\rho \mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\mu \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\mu \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix} \implies \rho \mu \neq \mu \rho$$

Cayley's Theorem

- Def. Let $f: A \to B$ be a function and let H be a subset of A. The image of H under f is $\{f(h) | h \in H\}$ and is denoted by f[H].
- Lemma: Let G and G' be groups and let $\phi: G \to G'$ be a one to one function such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. Then $\phi[G]$ is a subgroup of G' and ϕ is an isomorphism of G with $\phi[G]$.

Proof: We need to check the following two conditions for $\phi[G] \leq G'$.

- We need to show φ[G] is closed under the multiplication in G'. Let x', y' ∈ φ[G]. By definition there exist x, y ∈ G such that φ(x) = x' and φ(y) = y'. By hypothesis φ(xy) = φ(x)φ(y) = x'y'. Thus x'y' ∈ φ[G], so φ[G] is closed under the multiplication in G'.
- 2) We need to show if $x' \in \phi[G]$, then so is its inverse. Assume $x' = \phi(x)$. Notice that: $e'\phi(e) = \phi(ee) = \phi(e)\phi(e) \implies \phi(e) = e'$. Thus we have: $e' = \phi(e) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1}) = x'\phi(x^{-1})$ so $\phi(x^{-1})$ is the inverse of x' and $(x')^{-1} = \phi(x^{-1}) \in \phi[G]$.

Thus, $\phi(G)$ is a subgroup of G'.

By definition ϕ is an isomorphism of G with $\phi[G]$.

This lemma is used to prove:

Cayley's Theorem: Every group is isomorphic to a group of permutations.

Proof: Given a group G we will find a 1-1 map $\phi: G \to S_G$, where S_G is the group of permutations of G, such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. Then by our lemma G will be isomorphic to $\phi[G] \leq S_G$.

To begin with, notice that for any fixed $x \in G$

$$\sigma_x : G o G$$
 by $g o xg$

Is a 1-1 map of G onto G, and hence σ_{χ} is a permutation of G.

To see that σ_x is 1-1 notice that:

$$\sigma_x(g_1) = \sigma_x(g_2)$$

$$xg_1 = xg_2$$

$$\Rightarrow \qquad g_1 = g_2 \text{ by the left cancellation law.}$$

To see that σ_x is onto, let $y \in G$ then $x^{-1}y \in G$ and

$$\sigma_x(x^{-1}y) = x(x^{-1}y)$$
$$= y.$$

Now we define $\phi: G \to S_G$ by:

$$\phi(x)=\sigma_x.$$

To finish the proof we just need to show that ϕ is 1-1 and $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

To see that ϕ is 1-1 notice that:

$$\phi(x) = \phi(y)$$

 $\sigma_x = \sigma_y, \quad \text{i.e.} \quad \sigma_x(g) = \sigma_y(g) \text{ for all } g \in G.$

In particular, this relationship holds for g = e, the identity element.

$$\sigma_x(e) = \sigma_y(e)$$

 $xe = ye \implies x = y$ (cancellation law).

So ϕ is 1-1.

To see that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$:

$$\begin{split} \phi(xy) &= \sigma_{xy} & \implies & \sigma_{xy}(g) = (xy)g \quad \text{for all } g \in G \\ \phi(x)\phi(y) &= \sigma_x \circ \sigma_y & \implies & \sigma_x \circ \sigma_y(g) = \sigma_x(yg) \\ &= x(yg) \quad \text{for all } g \in G. \end{split}$$

Thus $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

Thus by our lemma, G is isomorphic to $\phi[G] \leq S_G$.

Ex. If $G = \mathbb{Z}_4$, find the isomorphism $\phi: G \to S_G$ described in the previous theorem.

Since $G = \mathbb{Z}_4$, the group operation is addition modulo 4, $xy = x + y \pmod{4}$:

$$\sigma_x : \mathbb{Z}_4 o \mathbb{Z}_4 \,$$
 by $g o (x+g) \pmod{4}.$

For example, if x = 2:

$$\sigma_2(0) = 2 + 0 = 2$$

$$\sigma_2(1) = 2 + 1 = 3$$

$$\sigma_2(2) = 2 + 2 \pmod{4} = 0$$

$$\sigma_2(3) = 2 + 3 \pmod{4} = 1.$$

So σ_2 is the permutation:

$$\sigma_2 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}.$$

By our previous theorem:

$$\phi: \mathbb{Z}_4 \to S_{\mathbb{Z}_4} \quad \text{by } \phi(x) = \sigma_x$$

$$\phi(0) = \sigma_0 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix} \qquad \phi(2) = \sigma_2 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}$$

$$\phi(1) = \sigma_1 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix} \qquad \phi(3) = \sigma_3 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix}.$$