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Permutation Groups 

Def.  A permutation of a set 𝐴 is a function 𝜙: 𝐴 → 𝐴 that’s 1-1 and onto 

We can think of a permutation as a rearrangement of the elements of 𝐴. 

 

Ex.  Let 𝐴 = {1, 2, 3, 4, 5}.  Examples of permutations: 

𝜙1({1,2, 3, 4, 5}) = {4, 3, 1, 2, 5} 

𝜙2({1,2, 3, 4, 5}) = {5, 2, 3, 1, 4} 

       𝜙1     𝜙2 

    1 → 4                        1 → 5 

    2 → 3           2 → 2 

    3 → 1           3 → 3 

    4 → 2           4 → 1 

    5 → 5           5 → 4 

 

We can form a new permutation by taking the composition of the above 

permutations:  𝜙2  ∘ 𝜙1({1, 2, 3, 4, 5}). This is permutation multiplication.  

 

𝜙2  ∘ 𝜙1           i. e.        𝜙2 ∘ 𝜙1 

              1 → 4 → 1          1 → 1 

      2 → 3 → 3          2 → 3 

      3 → 1 → 5          3 → 5 

      4 → 2 → 2          4 → 2 

      5 → 5 → 4          5 → 4 
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We can write 𝜙1 and 𝜙2 as: 

𝜙1 = (
1 2 3 4 5
4 3 1 2 5

) 

  𝜙2 = (
1 2 3 4 5
5 2 3 1 4

). 

 

Then 𝜙2  ∘ 𝜙1= (
1 2 3 4 5
5 2 3 1 4

) (
1 2 3 4 5
4 3 1 2 5

) 

                         = (
1 2 3 4 5
1 3 5 2 4

).  

 

Theorem: Let 𝐴 be a nonempty set, and let 𝑆𝐴 be the set of permutations of 𝐴. 

Then 𝑆𝐴 is a group under permutation multiplication.  

 

Proof: 

0) 𝑆𝐴 is clearly closed under permutation multiplication. 
1) Permutation multiplication is just a composition of functions and 

composition of functions is associative so this multiplication is as well. 

2) The permutation 𝑖(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴 acts as an identity. 

3) For any permutation 𝜎, 𝜎−1 is just the permutation 𝜎 in the opposite 

direction that reverses what 𝜎 does. 

For example, if 𝜎 = (
1 2 3 4 5
2 3 5 4 1

) 

then 𝜎−1 = (
1 2 3 4 5
5 1 2 4 3

)  thus, 𝜎−1 ∘  𝜎 = 𝑖 and 𝜎 ∘ 𝜎−1 = 𝑖. 

Thus 𝑆𝐴 is a group. 

 

We will generally be concerned with 𝑆𝐴 where 𝐴 is a finite set, but that doesn’t 

have to be the case. 
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Def.  Let 𝐴 = {1, 2, … , 𝑛}. The group of all permutations of 𝐴 is called the  

               symmetric group on 𝒏 letters and is denoted 𝑆𝑛. 

       Note that the number of permutations on 𝑛 objects is 𝑛! 

       Thus, |𝑆𝑛| = 𝑛! 

 

Ex.    Let’s examine 𝑆3.  

 

                |𝑆3| = 3! = 6. 

 Let  𝜌0 = (
1 2 3
1 2 3

)   𝜇1 = (
1 2 3
1 3 2

) 

       𝜌1 = (
1 2 3
2 3 1

)   𝜇2 = (
1 2 3
3 2 1

) 

       𝜌2 = (
1 2 3
3 1 2

)   𝜇3 = (
1 2 3
2 1 3

) 

 

It’s easy (but cumbersome) to check the following multiplication table for 𝑆3 (by 

taking compositions of these permutations): 

 𝝆𝟎 𝝆𝟏 𝝆𝟐 𝝁𝟏 𝝁𝟐 𝝁𝟑 
𝝆𝟎 𝜌0 𝜌1 𝜌2 𝜇1 𝜇2 𝜇3 
𝝆𝟏 𝜌1 𝜌2 𝜌0 𝜇3 𝜇1 𝜇2 
𝝆𝟐 𝜌2 𝜌0 𝜌1 𝜇2 𝜇3 𝜇1 
𝝁𝟏 𝜇1 𝜇2 𝜇3 𝜌0 𝜌1 𝜌2 
𝝁𝟐 𝜇2 𝜇3 𝜇1 𝜌2 𝜌0 𝜌1 
𝝁𝟑 𝜇3 𝜇1 𝜇2 𝜌1 𝜌2 𝜌0 

 

Notice that 𝑆3 is not abelian (e.g. 𝜌1𝜇1 = 𝜇3 but 𝜇1𝜌1 = 𝜇2). In fact, it’s the 

smallest possible non-abelian group. 



4 
 

There is a natural correspondence between the elements of 𝑆3 and the ways in 

which 2 copies of an equilateral triangle with vertices 1, 2, 3 can be placed. 𝑆3 is 

also called 𝐷3, the 3rd dihedral group (symmetries of an equilateral triangle). 

  3        2 

𝜌1      Rotation 

 

1    2   3        1 

 3        2 

                                𝜇1      Mirror image about 

         an angle bisector. 

1    2   1        3 

 

𝐷4 is the 4th dihedral group which is the set of permutations of the vertices of a 

square corresponding to the symmetries of a square. This is called the octic 

group. 

    Rotations      Flips 

𝜌0 = (
1 2 3 4
1 2 3 4

)    𝜇1 = (
1 2 3 4
2 1 4 3

) 

 𝜌1 = (
1 2 3 4
2 3 4 1

)    𝜇2 = (
1 2 3 4
4 3 2 1

) 

𝜌2 = (
1 2 3 4
3 4 1 2

)             𝛿1 = (
1 2 3 4
3 2 1 4

) 

𝜌3 = (
1 2 3 4
4 1 2 3

)             𝛿2 = (
1 2 3 4
1 4 3 2

) 
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4   3      2     1 

     𝜌2 

1   2      3      4 

 

4  3         1        2 

     𝜇2 

1  2         4        3 

 

Multiplication table for 𝐷4: 

 𝝆𝟎 𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝁𝟏 𝝁𝟐 𝜹𝟏 𝜹𝟐 

𝝆𝟎 𝜌0 𝜌1 𝜌2 𝜌3 𝜇1 𝜇2 𝛿1 𝛿2 
𝝆𝟏 𝜌1 𝜌2 𝜌3 𝜌0 𝛿1 𝛿2 𝜇2 𝜇1 
𝝆𝟐 𝜌2 𝜌3 𝜌0 𝜌1 𝜇2 𝜇1 𝛿2 𝛿1 
𝝆𝟑 𝜌3 𝜌0 𝜌1 𝜌2 𝛿2 𝛿1 𝜇1 𝜇2 
𝝁𝟏 𝜇1 𝛿2 𝜇2 𝛿1 𝜌0 𝜌2 𝜌3 𝜌1 
𝝁𝟐 𝜇2 𝛿1 𝜇1 𝛿2 𝜌2 𝜌0 𝜌1 𝜌3 
𝜹𝟏 𝛿1 𝜇1 𝛿2 𝜇2 𝜌1 𝜌3 𝜌0 𝜌2 
𝜹𝟐 𝛿2 𝜇2 𝛿1 𝜇1 𝜌3 𝜌1 𝜌2 𝜌0 

 

𝐷4 is non-abelian.   

 

Ex.  Consider the following permutations in 𝑆6: 

 𝜎 = (
1 2 3 4 5 6
4 3 2 6 1 5

) 

 𝜏 = (
1 2 3 4 5 6
6 3 1 4 2 5

). 

Calculate 𝜎𝜏−2 and 𝜎66. 
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First calculate 𝜏−1: 

𝜏−1 = (1 2 3 4 5 6
3 5 2 4 6 1

). 

𝜏−2 = 𝜏−1 𝜏−1 

        =  (1 2 3 4 5 6
3 5 2 4 6 1

) (
1 2 3 4 5 6
3 5 2 4 6 1

) 

        = (
1 2 3 4 5 6
2 6 5 4 1 3

).  

 

       𝜎𝜏−2 = (
1 2 3 4 5 6
4 3 2 6 1 5

) (
1 2 3 4 5 6
2 6 5 4 1 3

) 

                  = (
1 2 3 4 5 6
3 5 1 6 4 2

).  

 

           𝜎2 = (
1 2 3 4 5 6
4 3 2 6 1 5

) (
1 2 3 4 5 6
4 3 2 6 1 5

) 

                 = (
1 2 3 4 5 6
6 2 3 5 4 1

). 

           𝜎3 = (
1 2 3 4 5 6
4 3 2 6 1 5

) (
1 2 3 4 5 6
6 2 3 5 4 1

) 

                 = (
1 2 3 4 5 6
5 3 2 1 6 4

). 

           𝜎4 = (
1 2 3 4 5 6
4 3 2 6 1 5

) (
1 2 3 4 5 6
5 3 2 1 6 4

) 

                 = (
1 2 3 4 5 6
1 2 3 4 5 6

). 

So 𝜎4 = 𝑖. 

 ⟹    𝜎4𝑘 = 𝑖.  

 

So  𝜎66 =  𝜎2 ∙  𝜎64 = 𝜎2 ∙ 𝑖 = (
1 2 3 4 5 6
6 2 3 5 4 1

). 
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Def.  The orbit of 𝑎 under 𝜎 is the set {𝜎𝑛(𝑎)| 𝑛 ∈ ℤ}.  

 

Ex.   Find the orbit of 5 under 𝜎 for the previous example.  

 

𝜎(5) = 1,         𝜎2(5) = 𝜎(1) = 4,        𝜎3(5) = 𝜎(4) = 6,   

𝜎4(5) = 𝜎(6) = 5. 

                                    Orbit(5) = {5,1, 4, 6}.  

 

Ex.  Find the number of elements in the set {𝜎 ∈ 𝑆5| 𝜎(2) = 5}.  

 

 (
1 2 3 4 5
𝑎 5 𝑏 𝑐 𝑑

)     The number of elements is the same as the 

 number of elements of 𝑆4 so the number of elements is 4! = 24.  

 

Ex.   Show that 𝑆5 is non-abelian by finding 2 permutations that don't commute. 

   4     𝜌 = (
1 2 3 4 5
2 3 4 5 1

) 

  5     3    𝜇 = (
1 2 3 4 5
2 1 5 4 3

) 

 

    1    2    𝜌𝜇 = (
1 2 3 4 5
2 3 4 5 1

) (
1 2 3 4 5
2 1 5 4 3

) 

    = (
1 2 3 4 5
3 2 1 5 4

) 

    

                                                                                                                                                                          𝜇𝜌 = (
1 2 3 4 5
2 1 5 4 3

) (
1 2 3 4 5
2 3 4 5 1

) 

                        = (
1 2 3 4 5
1 5 4 3 2

)          ⟹ 𝜌𝜇 ≠  𝜇𝜌. 
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Cayley’s Theorem 

Def.   Let 𝑓: 𝐴 → 𝐵 be a function and let 𝐻 be a subset of 𝐴. The image 

           of 𝑯 under 𝒇 is {𝑓(ℎ)| ℎ ∈ 𝐻} and is denoted by 𝑓[𝐻].  

 

Lemma: Let 𝐺 and 𝐺′ be groups and let 𝜙: 𝐺 → 𝐺′ be a one to one  

 function such that 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. Then 𝜙[𝐺] 

 is a subgroup of 𝐺′ and 𝜙 is an isomorphism of 𝐺 with 𝜙[𝐺].  

 

Proof: We need to check the following two conditions for  𝜙[𝐺] ≤ 𝐺′ .      

1) We need to show 𝜙[𝐺] is closed under the multiplication in 𝐺′. 

Let 𝑥′, 𝑦′ ∈ 𝜙[𝐺]. 

By definition there exist 𝑥, 𝑦 ∈ 𝐺 such that 𝜙(𝑥) = 𝑥′ and 

𝜙(𝑦) = 𝑦′.  By hypothesis 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) = 𝑥′𝑦′.  

Thus 𝑥′𝑦′ ∈ 𝜙[𝐺], so 𝜙[𝐺] is closed under the multiplication in 𝐺′.   

 

2) We need to show if 𝑥′ ∈ 𝜙[𝐺], then so is its inverse. 

Assume 𝑥′ = 𝜙(𝑥). Notice that: 

𝑒′𝜙(𝑒) = 𝜙(𝑒𝑒) = 𝜙(𝑒)𝜙(𝑒)   ⟹  𝜙(𝑒) = 𝑒′. 
Thus we have: 

𝑒′ = 𝜙(𝑒) = 𝜙(𝑥𝑥−1) = 𝜙(𝑥)𝜙(𝑥−1) = 𝑥′𝜙(𝑥−1) so 𝜙(𝑥−1) is 

the inverse of 𝑥′ and  (𝑥′)−1 =  𝜙(𝑥−1) ∈ 𝜙[𝐺]. 

 

   Thus, 𝜙(𝐺) is a subgroup of 𝐺′.  

 

   By definition 𝜙 is an isomorphism of 𝐺 with 𝜙[𝐺].  
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This lemma is used to prove: 

Cayley’s Theorem: Every group is isomorphic to a group of permutations. 

 

Proof:  Given a group 𝐺 we will find a 1-1 map 𝜙: 𝐺 → 𝑆𝐺 , where 𝑆𝐺  is the 

group of permutations of 𝐺, such that 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺.              

Then by our lemma 𝐺 will be isomorphic to 𝜙[𝐺] ≤ 𝑆𝐺 . 

To begin with, notice that for any fixed 𝑥 ∈ 𝐺 

                                        𝜎𝑥: 𝐺 → 𝐺  by  

                                              𝑔 → 𝑥𝑔 

Is a 1-1 map of 𝐺 onto 𝐺, and hence 𝜎𝑥 is a permutation of 𝐺. 

To see that 𝜎𝑥 is 1-1 notice that: 

                                        𝜎𝑥(𝑔1) = 𝜎𝑥(𝑔2)  

                                              𝑥𝑔1 = 𝑥𝑔2 

                                  ⟹          𝑔1 = 𝑔2   by the left cancellation law.   

 

To see that 𝜎𝑥 is onto, let 𝑦 ∈ 𝐺 then 𝑥−1𝑦 ∈ 𝐺 and 

                                          𝜎𝑥(𝑥−1𝑦) = 𝑥(𝑥−1𝑦) 

                                                        = 𝑦. 

 

Now we define 𝜙: 𝐺 → 𝑆𝐺  by: 

                                               𝜙(𝑥) = 𝜎𝑥. 
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To finish the proof we just need to show that 𝜙 is 1-1 and 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) 

for all 𝑥, 𝑦 ∈ 𝐺. 

To see that 𝜙  is 1-1 notice that:  

                                    𝜙(𝑥) = 𝜙(𝑦) 

                                     𝜎𝑥 = 𝜎𝑦,      i.e.    𝜎𝑥(𝑔) = 𝜎𝑦(𝑔)  for all 𝑔 ∈ 𝐺. 

In particular, this relationship holds for 𝑔 = 𝑒, the identity element. 

                                           𝜎𝑥(𝑒) = 𝜎𝑦(𝑒)   

                                            𝑥𝑒 = 𝑦𝑒     ⟹  𝑥 = 𝑦   (cancellation law). 

So 𝜙  is 1-1. 

 

To see that 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺: 

           𝜙(𝑥𝑦) = 𝜎𝑥𝑦                ⟹        𝜎𝑥𝑦(𝑔) = (𝑥𝑦)𝑔    for all 𝑔 ∈ 𝐺 

      𝜙(𝑥)𝜙(𝑦) = 𝜎𝑥 ∘ 𝜎𝑦         ⟹  𝜎𝑥 ∘ 𝜎𝑦(𝑔) = 𝜎𝑥(𝑦𝑔) 

                                                                                = 𝑥(𝑦𝑔)    for all 𝑔 ∈ 𝐺. 

Thus 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

 

Thus by our lemma, 𝐺 is isomorphic to 𝜙[𝐺] ≤ 𝑆𝐺 . 
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Ex.  If 𝐺 = ℤ4, find the isomorphism 𝜙: 𝐺 → 𝑆𝐺  described in the previous 

theorem.   

 

Since 𝐺 = ℤ4, the group operation is addition modulo 4, 𝑥𝑦 = 𝑥 + 𝑦 (mod 4): 

                          𝜎𝑥: ℤ4 → ℤ4  by  

                                   𝑔 → (𝑥 + 𝑔) (mod 4). 

For example, if 𝑥 = 2: 

                           𝜎2(0) = 2 + 0 = 2     

                           𝜎2(1) = 2 + 1 = 3 

                           𝜎2(2) = 2 + 2 (mod 4)= 0 

                           𝜎2(3) = 2 + 3 (mod 4)= 1.  

 

So 𝜎2 is the permutation: 

                            𝜎2 = (
0 1 2 3
2 3 0 1

).   

 

By our previous theorem: 

                               𝜙: ℤ4 → 𝑆ℤ4
   by  𝜙(𝑥) = 𝜎𝑥                                                        

  𝜙(0) = 𝜎0 = (
0 1 2 3
0 1 2 3

)             𝜙(2) = 𝜎2 = (
0 1 2 3
2 3 0 1

) 

  𝜙(1) = 𝜎1 = (
0 1 2 3
1 2 3 0

)              𝜙(3) = 𝜎3 = (
0 1 2 3
3 0 1 2

). 


