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                                               Cyclic Groups 

If 𝐺 = < 𝑎 >;  i.e. 𝐺 = {𝑎𝑛|  𝑛 ∈ ℤ} then 𝐺 is called a cyclic group and 𝑎 is its 

generator.  If 𝐺 is finite then the order of  𝑎 is the order of < 𝑎 >. If 𝐺 is not 

finite we say 𝑎 has infinite order.  

 

Ex. If 𝐺 = ℤ10 then 𝑎 = 1 generates 𝐺 and has order 10. 

Ex. If 𝐺 = ℤ then 𝑎 = 1 generates 𝐺 and has infinite order. 

 

Theorem: Every cyclic group is abelian.   

 

Proof: 𝐺 = {𝑎𝑛| 𝑛 ∈ ℤ}  

Let 𝑔1, 𝑔2 ∈ 𝐺 then 𝑔1 = 𝑎𝑘 ,   𝑔2 = 𝑎𝑗. 

𝑔1𝑔2 = 𝑎𝑘 ∙ 𝑎𝑗 = 𝑎𝑘+𝑗 = 𝑎𝑗+𝑘 = 𝑎𝑗 ∙ 𝑎𝑘 = 𝑔2𝑔1 so 𝐺 is abelian. 

 

Theorem (Division Algorithm for ℤ): If  𝑚 is a positive integer and 𝑝 is any integer, 

then there exist unique integers 𝑞 and 𝑟 such that  

         𝑝 = 𝑚𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑚.   

 

         𝑝 

 

−2𝑚             − 𝑚                0            𝑚             2𝑚                 3𝑚  

If 𝑝 = 𝑞𝑚 for some 𝑞 then 𝑟 = 0. Otherwise 𝑞𝑚 < 𝑝 < (𝑞 + 1)𝑚 for some 𝑞 

and since the distance between 𝑞𝑚 and (𝑞 + 1)𝑚 is 𝑚,  0 < 𝑟 < 𝑚. 

We call 𝑞 the quotient and 𝑟 the non-negative remainder when 𝑝 is divided by 𝑚. 
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Ex. Find 𝑞 and 𝑟 when 46 is divided by 7.  

 

7, 14, 21, 28, 35, 42, 49, … 

42 < 46 < 49 

So 46 = 7(6) + 4 

𝑞 = 6 and 𝑟 = 4. 

 

Theorem: A subgroup 𝐻 of a cyclic group 𝐺 is cyclic. 

 

Proof: Let 𝐺 be generated by 𝑎;  𝐺 = {𝑎𝑛| 𝑛 ∈ ℤ}. 

 If 𝐻 = < 𝑒 > = {𝑒} then 𝐻 is cyclic. 

 If 𝐻 ≠ {𝑒} then 𝑎𝑝 ∈ 𝐻 for some 𝑝 ∈ ℤ+. 

 Let 𝑚 be the smallest integer in ℤ+ such that 𝑎𝑚 ∈ 𝐻. 

 

 Now let’s show that 𝑑 = 𝑎𝑚 generates 𝐻. 

 We must show that every 𝑏 ∈ 𝐻 is a power of 𝑑. 

 Since 𝑏 ∈ 𝐻 and 𝐻 ≤ 𝐺, we have 𝑏 = 𝑎𝑝 for some 𝑝. 

 Find 𝑞, 𝑟 such that 𝑝 = 𝑚𝑞 + 𝑟 for 0 ≤ 𝑟 < 𝑚. 

 Then 𝑎𝑝 = 𝑎𝑚𝑞+𝑟 = (𝑎𝑚)𝑞𝑎𝑟 , 

 so 𝑎𝑟 = (𝑎𝑚)−𝑞𝑎𝑝.    

 Now since 𝑎𝑝 ∈ 𝐻, 𝑎𝑚 ∈ 𝐻 and 𝐻 is a group, both (𝑎𝑚)−𝑞 and 𝑎𝑝 

 are in 𝐻 thus, 

                       (𝑎𝑚)−𝑞𝑎𝑝 ∈ 𝐻    Thus      𝑎𝑟 ∈ 𝐻.     
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           Since 𝑚 is the smallest positive integer such that 𝑎𝑚 ∈ 𝐻 and  

 0 ≤ 𝑟 < 𝑚, we must have 𝑟 = 0. Thus, 𝑝 = 𝑞𝑚 and              

          𝑏 = 𝑎𝑛 = (𝑎𝑚)𝑞 = 𝑑𝑞 .  Thus 𝑏 is a power of 𝑑. 

 

Ex.  ℤ, + is a cyclic group. By the previous theorem any subgroup of ℤ must also be 

cyclic. Thus, any subgroup of ℤ must be generated by 𝑛, an  integer (i.e. the 

subgroups of ℤ are precisely 𝑛ℤ where 𝑛 is an integer).  

 

Def.  Let 𝑟 and 𝑠 be two positive integers.  𝐻 = {𝑛𝑟 + 𝑚𝑠| 𝑛, 𝑚 ∈ ℤ} is a 

subgroup of ℤ, + and thus is cyclic with a generator 𝑑 ∈ ℤ+. 𝑑 is called the 

greatest common divisor of 𝑟 and 𝑠. We write: 𝒅 = 𝑮𝑪𝑫(𝒓, 𝒔). Since 𝑟, 𝑠 ∈ 𝐻 

and 𝑑 ∈ 𝐻 there must exist integers 𝑚, 𝑛 such that 𝑑 = 𝑛𝑟 + 𝑚𝑠. 

 

Ex. Find 𝐺𝐶𝐷(60, 96)   

 

      Positive divisors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. 

      Positive divisors of 96 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96. 

      𝐺𝐶𝐷(60, 96) = 12. 

      The easiest way to find the GCD is to prime factor the numbers  

      and take the common factors: 

      60 = 22 × 3 × 5,    96 = 25 × 3,  so  𝐺𝐶𝐷(60, 96) = 22 × 3 = 12. 

 

      If 2 numbers 𝑟, 𝑠  are relatively prime (i.e. have only 1 as a common  

       factor) then 𝐺𝐶𝐷(𝑟, 𝑠) = 1. 
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Def.  Two groups < 𝑆,∗> and < 𝑆′,∗′> are isomorphic if there exists a 1-1 

        function 𝜙 (called an isomorphism) of 𝑆 onto 𝑆′ such that: 

              𝜙(𝑥 ∗ 𝑦) = 𝜙(𝑥) ∗′ 𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝑆.  

 

Ex.  Show the group of roots of 𝑥4 = 1, 𝐺 = {1, 𝑖, −1, −𝑖} = {𝑖0, 𝑖1, 𝑖2, 𝑖3}, 

where 𝑖 = √−1, is isomorphic to ℤ4.   

 

                                    Let 𝜙: 𝐺 → ℤ4,       by 𝜙(𝑖𝑘) = 𝑘.   

 

By definition, 𝜙 is 1- 1 if 𝜙(𝑥) = 𝜙(𝑦)  ⟹   𝑥 = 𝑦 for any 𝑥, 𝑦 ∈ 𝐺. 

                   𝜙(𝑖𝑗) = 𝜙(𝑖𝑘)  

                             𝑗 = 𝑘      ⟹    𝑖𝑗 = 𝑖𝑘. 

 

 𝜙 is onto ℤ4 because if 𝑥 ∈ ℤ4, then 𝜙(𝑖𝑥) = 𝑥, and 𝑖𝑥 ∈ 𝐺. 

 

Now we must show that 𝜙(𝑥 ∗ 𝑦) = 𝜙(𝑥) ∗′ 𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

In this case:    ∗= usual multiplication 

                        ∗′= addition modulo 4. 

 

           𝜙(𝑖𝑗 ∗ 𝑖𝑘) = 𝜙(𝑖𝑗 ∙ 𝑖𝑘) = 𝜙(𝑖𝑗+𝑘)  

                                                      =  𝑗+4𝑘 

                                                       =  𝜙(𝑖𝑗)+4𝜙(𝑖𝑘) = 𝜙(𝑖𝑗) ∗′ 𝜙(𝑖𝑘) .   

So 𝜙 is an isomorphism from 𝐺 to ℤ4.               
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Theorem: Let 𝐺 be a cyclic group with generator 𝑎. 

   1.   If the order of 𝐺 is infinite, then 𝐺 is isomorphic to < ℤ, +>. 

   2. If 𝐺 has finite order 𝑛, then 𝐺 is isomorphic to < ℤ𝑛, +>. 

 

Proof:  

1.    Assume for all positive integers 𝑠, 𝑎𝑠 ≠ 𝑒.                                                           

      In this case, no two distinct exponents 𝑗 and 𝑘 can give equal elements 𝑎𝑗 and 

      𝑎𝑘 of 𝐺.                                                                                                               

      Suppose that  𝑎𝑗 = 𝑎𝑘 and say 𝑗 > 𝑘 then, 𝑎𝑗𝑎−𝑘 = 𝑎𝑗−𝑘 = 𝑒 but this 

       contradicts the assumption 𝑎𝑠 ≠ 𝑒 for 𝑠 ∈ ℤ+. Hence every element of 𝐺 can 

       be expressed as 𝑎𝑠 for a unique 𝑠 ∈ ℤ.  

 

 Define 𝜙 by:  𝜙: 𝐺 → ℤ;   𝜙(𝑎𝑖) = 𝑖.  

This maps 𝐺 onto ℤ, and is 1-1 since:  

            𝜙(𝑎𝑖) = 𝜙(𝑎𝑗) 

means 𝑖 = 𝑗 and thus 𝑎𝑖 = 𝑎𝑗 . 

 

Now we must show 𝜙(𝑥 ∗ 𝑦) = 𝜙(𝑥) ∗′ 𝜙(𝑦) for all 𝑥, 𝑦 ∈ 𝐺. 

𝜙(𝑎𝑖𝑎𝑗) = 𝜙(𝑎𝑖+𝑗) = 𝑖 + 𝑗 = 𝜙(𝑎𝑖) + 𝜙(𝑎𝑗). 

Thus 𝜙 is an isomorphism. 

 

2.     Assume 𝑎𝑠 = 𝑒 for some positive integer 𝑠, let 𝑛 be the smallest possible 

        integer such that 𝑎𝑛 = 𝑒. 

 If 𝑡 ∈ ℤ and 𝑡 = 𝑛𝑞 + 𝑟 for 0 ≤ 𝑟 < 𝑛. 
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 Then 𝑎𝑡 = 𝑎𝑛𝑞+𝑟 = (𝑎𝑛)𝑞 ∙ 𝑎𝑟 = 𝑒𝑞 ∙ 𝑎𝑟 = 𝑎𝑟 . 

 If 0 < 𝑘 < ℎ < 𝑛 and 𝑎ℎ = 𝑎𝑘 

 then 𝑎ℎ−𝑘 = 𝑒 and 0 < ℎ − 𝑘 < 𝑛, which contradicts that 𝑛 is 

 the smallest positive integer with 𝑎𝑛 = 𝑒. Thus ℎ = 𝑘. 

 Thus 𝑎0 = 𝑒, 𝑎, 𝑎2, … 𝑎𝑛−1 are distinct elements of 𝐺.  

 

 Define 𝜓: 𝐺 → ℤ𝑛 by 𝜓(𝑎𝑖) = 𝑖. 

  𝜓 is 1-1 (as in part 1.) and onto. 

 And 𝜓(𝑎𝑖𝑎𝑗) = 𝜓(𝑎𝑖+𝑗) = 𝑖+𝑛𝑗 = 𝜓(𝑎𝑖)+𝑛𝜓(𝑎𝑗) 

 So 𝜓 is an isomorphism. 

 

Ex.  Find the order of the cyclic subgroup 𝐻 of ℤ30 generated by 12.  

    

       Notice that:  𝑎 = 12 

                          𝑎2 = 12 + 12 = 24 

                          𝑎3 = 12 + 12 + 12 = 36 (𝑚𝑜𝑑 30) = 6 

                          𝑎4 = 12 + 12 + 12 + 12 = 48 (𝑚𝑜𝑑 30) = 18 

                          𝑎5 = 12 + 12 + 12 + 12 + 12 = 60 (𝑚𝑜𝑑 30) = 0. 

      So 𝐻 =< 12 >= {0, 6, 12, 18, 24}. 

     Thus |𝐻| = 5. 

     Notice that |𝐻| =
|ℤ30|

𝐺𝐶𝐷(12,30)
=

30

6
= 5.    
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This leads us to: 

Theorem:  Let 𝐺 be a cyclic group with 𝑛 elements and generated by 𝑎. 

        Let 𝑐 = 𝑎𝑡. Then 𝑐 generates a cyclic subgroup 𝐻 of 𝐺    

        containing  
𝑛

𝑑
  elements, where 𝑑 is the greatest common   

                   divisor of 𝑛 and 𝑡. Also < 𝑎𝑡 > = < 𝑎𝑝 > if and only if 

            𝐺𝐶𝐷(𝑡, 𝑛) = 𝐺𝐶𝐷(𝑝, 𝑛).  

 

Corollary:   If 𝑎 is a generator of a finite cyclic group 𝐺 of order 𝑛, then   

           the other generators of 𝐺 are elements of the form 𝑎𝑟,  

          where 𝑟 is relatively prime to 𝑛. 

 

E x.   Find the order of the subgroup ℤ18, + generated by: 

a) 6 

b) 15. 

 

a) 𝐺𝐶𝐷(6,18) = 6 so the order of the group generated by 6 is 

18

𝐺𝐶𝐷(6,18)
=

18

6
= 3. 

b) 𝐺𝐶𝐷(15,18) = 3 so the order of the group generated by 15 is 

18

𝐺𝐶𝐷(15,18)
=

18

3
= 6. 
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Ex.   Find all the subgroups of ℤ24 and draw a subgroup diagram. 

 

 The subgroup generated by 1 is the entire group ℤ24. Any other positive 

integer less than 24 and relatively prime to 24 will also generate ℤ24. Those 

numbers are 1, 5, 7, 11, 13, 17, 19, and 23. 

Now let’s take 2 as a generator: 

 < 2 > = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} is a group of order   

12 =
24

𝐺𝐶𝐷(2,24)
. Any other integer in ℤ24 of the form 𝑏 = 2ℎ, where ℎ is 

relatively prime to 12 will also generate this subgroup. 

So 𝑏 = 10, 14, and 22  i.e. 𝐺𝐶𝐷(𝑏, 24) = 2. 

     

< 3 > = {0, 3, 6, 9, 12, 15, 18, 21} is a group of order 8 =
24

𝐺𝐶𝐷(3,24)
.  

𝐺𝐶𝐷(𝑏, 24) = 3 if 𝑏 = 3ℎ and ℎ is relatively prime to 8,  

i.e. 𝑏 = 9, 15 and 21.  Thus 9, 15,  and 21 generate the same subgroup.  

 

< 4 > = {0, 4, 8, 12, 16  20} is a group of order 6 =
24

𝐺𝐶𝐷(4,24)
.  

𝐺𝐶𝐷(𝑏, 24) = 4 if 𝑏 = 4ℎ and ℎ is relatively prime to 6,  

i.e. 𝑏 = 20.  Thus 20 generates the same subgroup.  
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So far we have all subgroups generated by positive integers ≤ 23 except 

6, 8, 12, 16, and 18. 

< 6 > = {0, 6, 12, 18} is a subgroup of order 4 =
24

𝐺𝐶𝐷(6,24)
.  

𝐺𝐶𝐷(𝑏, 24) = 6 if 𝑏 = 6ℎ and ℎ is relatively prime to 4, 

i.e. 𝑏 = 18.  Thus 18 generates the same subgroup. 

 

< 8 > = {0, 8, 16} is a subgroup of order 3 =
24

𝐺𝐶𝐷(8,24)
.   

𝐺𝐶𝐷(𝑏, 24) = 8 if 𝑏 = 8ℎ and ℎ is relatively prime to 3, 

i.e. 𝑏 = 16.  Thus 16 generates the same subgroup. 

 

< 12 > = {0, 12} is a subgroup of order 2.  

 

  < 0 > = {0} is a subgroup of order 1.  

 

The subgroup diagram is: 

                                                       < 1 > 

                                           < 2 >             < 3 > 

                                  < 4 >            < 6 > 

                         < 8 >         < 12 > 

                                      < 0 >          


