Subgroups

Notation: When it's obvious that the group operation is addition (for example when $G = \mathbb{Z}$) we may write $a + b$ instead of $a * b$. Otherwise, we'll write ab instead of $a * b$.

We will also write:

$$
a^{n} = (a)(a)(a) ... (a) \qquad n \text{ times}
$$

\n
$$
a^{-1} = \text{inverse of } a
$$

\n
$$
a^{-n} = (a^{-1})(a^{-1}) ... (a^{-1}) \qquad n \text{ times}
$$

\n
$$
a^{0} = e.
$$

Notice that $a^m\cdot a^n=a^{m+n}; \ \ \ m,n\in\mathbb{Z}.$

Ex.
$$
a^{-2}a^4 = (a^{-1})(a^{-1})(a)(a)(a)(a)
$$

\n
$$
= (a^{-1})(a^{-1}a)(a)(a)(a)
$$
\n
$$
= (a^{-1})(e)(a)(a)(a)
$$
\n
$$
= (a^{-1}e)(a)(a)(a)
$$
\n
$$
= (a^{-1})(a)(a)(a)
$$
\n
$$
= (a^{-1}a)(a)(a)
$$
\n
$$
= e(a)(a)
$$
\n
$$
= a^2.
$$

Def. If G is a group, then the **order** of G , written $|G|$, is the number of elements in G .

Def. If a subset H of a group G is closed under the binary operation of G and if H is a group with that binary operation, then H is a **subgroup** of G . We will write $H \leq G$ or $G \geq H$ in that case.

$$
H < G \text{ or } G > H \text{ will mean } H \leq G \text{ but } H \neq G
$$

- Ex. $(\mathbb{Z}, +) \leq (\mathbb{R}, +)$, in fact $(\mathbb{Z}, +) < (\mathbb{R}, +)$, since $\mathbb{Z} \subsetneq \mathbb{R}$ and \mathbb{Z} and \mathbb{R} are both groups under $+$.
- Ex. $(\mathbb{Q}^+, +)$ is not a subgroup of $(\mathbb{R}, +)$ even though $\mathbb{Q}^+ \subseteq \mathbb{R}$. This is because \mathbb{Q}^+ is a group under \cdot not $+$ (under $+$, \mathbb{Q}^+ doesn't contain inverses for all of its elements).
- Def. If G is a group, then the subgroup consisting of G itself is called the **improper subgroup of G.** All the other subgroups are **proper subgroups**. The subgroup ${e}$ is called the **trivial subgroup of G**. All other subgroups are called **nontrivial**.
- Ex. Let $G = \mathbb{R}^n$ with vector addition as the binary operation. This is a group under $+$. Let H be the set of vectors in \mathbb{R}^n having 0 as the entry in the first component. Show H is a subgroup of G .
	- 0) H is closed under $+$: $< 0, a_2, a_3, ..., a_n > + < 0, b_2, b_3, ..., b_n >$ $=$ < 0, $a_2 + b_2$, ..., $a_n + b_n$ > \in H.
	- 1) + is associative on H because vector addition is associative.
- $2) < 0.0, \ldots, 0 > 0$
- 3) If $a = 0, a_1, a_2, ..., a_n > \in H$ Then $-a = 0, -a_1, -a_2, ..., -a_n > \in H$ and $a + (-a) = e$. $H \subsetneq G$ so H is a proper subgroup of G .
- Ex. (\mathbb{Q}^+, \cdot) is a proper subgroup of (\mathbb{R}^+, \cdot) . We saw earlier that both (\mathbb{Q}^+, \cdot) and (\mathbb{R}^+, \cdot) are groups under multiplication and $\mathbb{Q}^+ \subsetneq \mathbb{R}^+$.
- Ex. The roots of the equation $x^4=1$ (called the 4th roots of unity) form an abelian subgroup of \mathbb{C}^* under multiplication. The roots of $x^4=1$ are $H=\{1,i,-1,-i\}$, where $i^2=-1.$ Let's check that (H, \cdot) is a group. 0) If $a, b \in H$ then clearly $ab \in H$.
	- 1) Multiplication of complex numbers is associative and commutative.
	- 2) 1 is the identity element.

3)

It's actually the case that the n^{th} roots of unity, $n \in \mathbb{Z}^+$, form an abelian subgroup of order n of $(\mathbb{C}^*, \;\cdot).$ This group is sometimes called $\boldsymbol{U_n}.$

Ex. Another (abelian) group, V , of order 4 is called the Klein 4-Group

 $V = \{e, a, b, c\}$, and the multiplication is given by:

 V is a group.

- 0) The table shows that V is closed under multiplication.
- 1) One can check that the multiplication is associative by checking all the possible elements in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 2) e is the identity element shown by the table.
- 3) By the table we can see $a^{-1} = a$, $b^{-1} = b$ and $c^{-1} = c$.

V can be thought of as reflections of the vertices of a square along the x -axis,

 y -axis, and the origin.

 $a: 1 \leftrightarrow 4$ and $2 \leftrightarrow 3$

 $b: 1 \leftrightarrow 2$ and $3 \leftrightarrow 4$

 $c: 1 \leftrightarrow 3$ and $2 \leftrightarrow 4$.

Multiplication is just the composition of these functions:

Ex. Let's put the tables of $(\mathbb{Z}_4, +)$ and (V, \cdot) next to each other:

What subgroups of $(\mathbb{Z}_4, +)$ exist other than \mathbb{Z}_4 and $\{0\}$?

Notice that $H = \{0,2\}$ is a subgroup of \mathbb{Z}_4

- 0) $0 + 0 = 0$, $0 + 2 = 2$, $2 + 0 = 2$, $2 + 2 = 4$ mod $2 = 0$. So, H is closed under $+$.
- $1)$ + is associative.
- 2) 0 is the identity element.
- 3) 2 is its own inverse so if $a\in H$, then $a^{-1}\in H.$

Notice that: {0,1},{0,3},{1,2},{1,3},{2,3},{0, 1, 2},{0, 2, 3},{1, 2, 3} are not subgroups of \mathbb{Z}_4 because in each case the sets are not closed under addition.

For example:

$$
\{0,3\}, \quad 3+3=6 \text{ mod } 4 = 2 \notin \{0,3\}
$$

$$
\{1,2\} \quad 1+2=3 \notin \{1,2\} \text{ etc.}
$$

What subgroups of V exist other than V and ${e}$?

 $H_1 = \{e, a\}, H_2 = \{e, b\}, H_3 = \{e, c\}$ are also subgroups.

The multiplication table for V shows that for each set $H_i,\,\,i=1,2,3$

- **0)** H_i is closed under \cdot .
- 1) ∙ is associative.
- 2) e is the identity element.
- 3) H_i contains all of its inverses.

We can diagram \mathbb{Z}_4 and its subgroups and V and its subgroups by:

Theorem: A nonempty subset H of a group G is a subgroup of G if and only if

- 1. H is closed under the binary operation of G .
- 2. For all $a \in H$, $a^{-1} \in H$.

Proof: If $H \leq G$ then 1, 2 hold by the definition of a group.

If 1, 2 hold we just need to know that the multiplication is associative in H and that $e \in H$.

For any $a, b, c \in H$, a, b, c are also in G so, $(ab)c = a(bc)$.

Since H is nonempty, closed under multiplication, and for all $a\in H$, $a^{-1}\in H$, then $aa^{-1} = e \in H$.

Hence $H \leq G$.

- Ex. Let F be the group of real valued functions whose domain is $\mathbb R$ under addition. The subset H consisting of differentiable (or continuous) functions is a subgroup of F .
	- 1. The sum of differentiable functions is differentiable.
	- 2. $-f(x)$, the inverse of $f(x)$, is differentiable.
- Ex. Let $G = GL(n, \mathbb{R})$ of invertible $n \times n$ matrices (which means if $A \in GL(n, \mathbb{R})$, det $(A) \neq 0$) with matrix multiplication. Let $H =$ subset of G where $A \in H$ if $\det(A) = 1$. Show $H \leq G$.
	- 1. $A, B \in H$ then $\det(AB) = (\det A)(\det B) = (1)(1) = 1$ so H is closed under matrix multiplication.

2. If
$$
A \in H
$$
 then $det(A^{-1}) = \frac{1}{det A} = \frac{1}{1} = 1$. So $A^{-1} \in H$.

- Ex. Let $G = \mathbb{Z}$, $+$. Let $H = 5\mathbb{Z} = \{x = 5n | n \in \mathbb{Z}\}.$ Show that H is a subgroup of $G = \mathbb{Z}$.
	- 1. $a, b \in H \Rightarrow a = 5n$, $b = 5m$, $n, m \in \mathbb{Z}$. $a + b = 5n + 5m = 5(n + m), n + m \in \mathbb{Z}$ So H is closed under $+$.
	- 2. $a \in H \Rightarrow a = 5n, n \in \mathbb{Z}$. $-a = 5(-n), -n \in \mathbb{Z}$ so $-a \in H$. Thus H contains all of its inverses.

Cyclic Subgroups

What's the smallest subgroup H of \mathbb{Z}_{12} , + that contains 3?

For H to be a subgroup of \mathbb{Z}_{12} it needs to contain 0, the identity element of \mathbb{Z}_{12} . It also needs to be closed under addition so,

 $3 + 3 = 6 \in H$ $3 + 6 = 9 \in H$ and $9 + 3 = 0 \in H$. Notice the inverse of 6 is 6 (i.e. $6 + 6 = 0$ mod 12) and the inverse of 9 is 3 (i.e. $9 + 3 = 0$ mod 12), So $\{0, 3, 6, 9\}$ is the smallest subgroup of \mathbb{Z}_{12} that contains 3.

In general, if a subgroup $H \leq G$ contains an element α then it must contain $\{a^n, n \in \mathbb{Z}\}.$

Theorem: Let G be a group and let $a \in G$. Then $H = \{a^n | n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a .

Proof:

1. Since $a^r \cdot a^s = a^{r+s}$ for $r, s \in \mathbb{Z}$, H is closed under multiplication.

2. If $a^r \in H$ then $a^{-r} \in H$ and $a^r \cdot a^{-r} = e$. So H contains inverses.

Hence H is a subgroup of G .

Notice that any subgroup of G that contains α must also contain all powers of α and thus must contain H . Thus H is the smallest subgroup of G containing a .

- Def. Let G be a group and $a \in G$. Then the subgroup $H = \{a^n | n \in \mathbb{Z}\}$ of G is called the **cyclic subgroup of G** generated by a , and denoted by $a > c$.
- Def. An element α of a group G generates G and is a generator for G if $a > a > a$. A group G is **cyclic** if there is some a in G that generates G.
- Ex. $\mathbb Z$ is a cyclic group under + and 1 and -1 are both generators of $\mathbb Z$.

Ex. \mathbb{Z}_4 , $+$ is cyclic and both 1 and 3 are generators, i.e. $< 1 > = < 3 > = \mathbb{Z}_4$.

Ex. $V =$ Klein 4-group is not cyclic because

 $a^2 = e$, $b^2 = e$, $c^2 = e$ so $\lt a > \lt b > \lt c >$ generate subgroups of V of order 2 and $|V| = 4$.

Ex. \mathbb{Z}_n is a cyclic group and 1 and $n-1$ are generators. There could be other generators depending on what *n* is. For example, if $n = 8$, then 1,3,5, and 7 are generators (any number relatively prime to n , i.e. a number with no common factors with n will be a generator).

Ex. If $a = 3$, find $\lt a \gt \in \mathbb{Z}$, $+$.

 $a^1 = 3$ a $a^0 = 0$ $a^2 = 3 + 3 = 6$ a $a^{-1} = -3$ $a^3 = 3 + 3 + 3 = 9$ $a^{-2} = -3 + (-3) = -6$ \mathbf{i} $a^n = 3 + 3 + \dots + 3 = 3n$ $a^{-n} = -3 + (-3) + \dots + (-3) = -3n$.

 $\text{So} < a > = < 3 > = 3\mathbb{Z} = \{n \mid n = 3m, m \in \mathbb{Z}\}.$

Ex. Find all elements in the cyclic subgroup H of $GL(2,\mathbb{R})$ (with matrix multiplication) generated by $A = |$ 1 1 0 1].

$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
$$

\n
$$
A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}
$$

\n
$$
A^{3} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}
$$

\n:
\n
$$
A^{n} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.
$$

If
$$
A \in GL(2, \mathbb{R})
$$
, $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
\nThen $A^{-1} = \frac{1}{det A} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$ so,
\n $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
\n $A^{-2} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$
\n \vdots
\n $A^{-n} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$
\nand $A^{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
\nSo $H = \{A \in GL(2, \mathbb{R}) \mid A = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}, n \in \mathbb{Z} \}.$