Subgroups

Notation: When it's obvious that the group operation is addition (for example when $G = \mathbb{Z}$) we may write a + b instead of a * b. Otherwise, we'll write ab instead of a * b.

We will also write:

$$a^n = (a)(a)(a) \dots (a)$$
 n times
 $a^{-1} =$ inverse of *a*
 $a^{-n} = (a^{-1})(a^{-1}) \dots (a^{-1})$ *n* times
 $a^0 = e$.

Notice that $a^m \cdot a^n = a^{m+n}$; $m, n \in \mathbb{Z}$.

Ex.
$$a^{-2}a^4 = (a^{-1})(a^{-1})(a)(a)(a)(a)$$

 $= (a^{-1})(a^{-1}a)(a)(a)(a)$
 $= (a^{-1})(e)(a)(a)(a)$
 $= (a^{-1}e)(a)(a)(a)$
 $= (a^{-1}a)(a)(a)$
 $= e(a)(a)$
 $= a^2$.

Def. If G is a group, then the **order** of G, written |G|, is the number of elements in G.

Def. If a subset H of a group G is closed under the binary operation of G and if H is a group with that binary operation, then H is a **subgroup** of G. We will write $H \leq G$ or $G \geq H$ in that case.

$$H < G$$
 or $G > H$ will mean $H \leq G$ but $H \neq G$

- Ex. $(\mathbb{Z}, +) \leq (\mathbb{R}, +)$, in fact $(\mathbb{Z}, +) < (\mathbb{R}, +)$, since $\mathbb{Z} \subsetneq \mathbb{R}$ and \mathbb{Z} and \mathbb{R} are both groups under +.
- Ex. $(\mathbb{Q}^+, +)$ is not a subgroup of $(\mathbb{R}, +)$ even though $\mathbb{Q}^+ \subseteq \mathbb{R}$. This is because \mathbb{Q}^+ is a group under \cdot not + (under +, \mathbb{Q}^+ doesn't contain inverses for all of its elements).
- Def. If G is a group, then the subgroup consisting of G itself is called the improper subgroup of G. All the other subgroups are proper subgroups.
 The subgroup {e} is called the trivial subgroup of G. All other subgroups are called nontrivial.
- Ex. Let $G = \mathbb{R}^n$ with vector addition as the binary operation. This is a group under +. Let H be the set of vectors in \mathbb{R}^n having 0 as the entry in the first component. Show H is a subgroup of G.
 - 0) *H* is closed under +: $< 0, a_2, a_3, ..., a_n > + < 0, b_2, b_3, ..., b_n >$ $= < 0, a_2 + b_2, ..., a_n + b_n > \in H.$
 - 1) + is associative on H because vector addition is associative.

- 2) < 0, 0, ..., 0 > = $e \in H$.
- 3) If $a = \langle 0, a_1, a_2, ..., a_n \rangle \in H$ Then $-a = \langle 0, -a_1, -a_2, ..., -a_n \rangle \in H$ and a + (-a) = e. $H \subsetneq G$ so H is a proper subgroup of G.
- Ex. (\mathbb{Q}^+, \cdot) is a proper subgroup of (\mathbb{R}^+, \cdot) . We saw earlier that both (\mathbb{Q}^+, \cdot) and (\mathbb{R}^+, \cdot) are groups under multiplication and $\mathbb{Q}^+ \subsetneq \mathbb{R}^+$.

Ex. The roots of the equation $x^4 = 1$ (called the 4th roots of unity) form an abelian subgroup of \mathbb{C}^* under multiplication. The roots of $x^4 = 1$ are $H = \{1, i, -1, -i\}$, where $i^2 = -1$. Let's check that (H, \cdot) is a group. 0) If $a, b \in H$ then clearly $ab \in H$.

- 1) Multiplication of complex numbers is associative and commutative.
- 2) 1 is the identity element.

3)

<u>element</u>	inverse	product
1	1	1.1 = 1
i	- i	$i \cdot (-i) = -i^2 = 1$
-1	-1	(-1)·(-1) = 1
- i	i	$(-i)(i) = -i^2 = 1$

It's actually the case that the n^{th} roots of unity, $n \in \mathbb{Z}^+$, form an abelian subgroup of order n of (\mathbb{C}^*, \cdot) . This group is sometimes called U_n .

Ex. Another (abelian) group, V, of order 4 is called the Klein 4-Group

 $V = \{e, a, b, c\}$, and the multiplication is given by:

•	е	a	b	С
е	е	а	b	С
a	а	е	С	b
b	b	С	е	а
С	С	b	а	е

V is a group.

- 0) The table shows that V is closed under multiplication.
- 1) One can check that the multiplication is associative by checking all the possible elements in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 2) e is the identity element shown by the table.
- 3) By the table we can see $a^{-1} = a$, $b^{-1} = b$ and $c^{-1} = c$.

V can be thought of as reflections of the vertices of a square along the x-axis,

y-axis, and the origin.

 $a: 1 \leftrightarrow 4 \text{ and } 2 \leftrightarrow 3$

 $b: 1 \leftrightarrow 2 \text{ and } 3 \leftrightarrow 4$

 $c: 1 \leftrightarrow 3 \text{ and } 2 \leftrightarrow 4.$

Multiplication is just the composition of these functions:

<i>a</i> :	$1 \leftrightarrow 4$	<i>b</i> :	$1\leftrightarrow 2$	
	$2 \leftrightarrow 3$		$2 \leftrightarrow 1$	
	$3 \leftrightarrow 2$		$3\leftrightarrow 4$	
	$4 \leftrightarrow 1$		$4\leftrightarrow 3$	
$b \cdot a$:	$1 \rightarrow 4 \rightarrow 3$	which is	$1 \rightarrow 3$	the same as C.
	$2 \rightarrow 3 \rightarrow 4$		$2 \rightarrow 4$	
	$3 \rightarrow 2 \rightarrow 1$		$3 \rightarrow 1$	
	$4 \rightarrow 1 \rightarrow 2$		$4 \rightarrow 2$	

Ex. Let's put the tables of $(\mathbb{Z}_4, +)$ and (V, \cdot) next to each other:

\mathbb{Z}_4					V				
+	0	1	2	3		е	а	b	С
0	0	1	2	3	е	е	а	b	С
1	1	2	3	0	а	а	е	С	b
2	2	3	0	1	b	b	С	е	а
3	3	0	1	2	С	С	b	а	е

What subgroups of $(\mathbb{Z}_4, +)$ exist other than \mathbb{Z}_4 and $\{0\}$?

Notice that $H = \{0,2\}$ is a subgroup of \mathbb{Z}_4

- 0) 0 + 0 = 0, 0 + 2 = 2, 2 + 0 = 2, $2 + 2 = 4 \mod 2 = 0$. So, *H* is closed under +.
- 1) + is associative.
- 2) 0 is the identity element .
- 3) 2 is its own inverse so if $a \in H$, then $a^{-1} \in H$.

Notice that: $\{0,1\}, \{0,3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{0, 1, 2\}, \{0, 2, 3\}, \{1, 2, 3\}$ are not subgroups of \mathbb{Z}_4 because in each case the sets are not closed under addition.

For example:

{0,3}, $3 + 3 = 6 \mod 4 = 2 \notin \{0,3\}$ {1,2} $1 + 2 = 3 \notin \{1,2\}$ etc.

What subgroups of V exist other than V and $\{e\}$?

 $H_1 = \{e, a\}, H_2 = \{e, b\}, H_3 = \{e, c\}$ are also subgroups.

The multiplication table for V shows that for each set H_i , i = 1, 2, 3

- 0) H_i is closed under \cdot .
- 1) · is associative.
- 2) *e* is the identity element.
- 3) H_i contains all of its inverses.

We can diagram \mathbb{Z}_4 and its subgroups and V and its subgroups by:

Theorem: A nonempty subset H of a group G is a subgroup of G if and only if

- 1. H is closed under the binary operation of G.
- 2. For all $a \in H$, $a^{-1} \in H$.

Proof: If $H \leq G$ then 1, 2 hold by the definition of a group.

If 1, 2 hold we just need to know that the multiplication is associative in H and that $e \in H$.

For any $a, b, c \in H$, a, b, c are also in G so, (ab)c = a(bc).

Since *H* is nonempty, closed under multiplication, and for all $a \in H$, $a^{-1} \in H$, then $aa^{-1} = e \in H$.

Hence $H \leq G$.

- Ex. Let F be the group of real valued functions whose domain is \mathbb{R} under addition. The subset H consisting of differentiable (or continuous) functions is a subgroup of F.
 - 1. The sum of differentiable functions is differentiable.
 - 2. -f(x), the inverse of f(x), is differentiable.

- Ex. Let $G = GL(n, \mathbb{R})$ of invertible $n \times n$ matrices (which means if $A \in GL(n, \mathbb{R})$, det $(A) \neq 0$) with matrix multiplication. Let H = subset of G where $A \in H$ if det(A) = 1. Show $H \leq G$.
 - A, B ∈ H then det(AB) = (detA)(detB) = (1)(1) = 1
 so H is closed under matrix multiplication.

2. If
$$A \in H$$
 then $det(A^{-1}) = \frac{1}{detA} = \frac{1}{1} = 1$. So $A^{-1} \in H$.

- Ex. Let $G = \mathbb{Z}$, +. Let $H = 5\mathbb{Z} = \{x = 5n | n \in \mathbb{Z}\}$. Show that H is a subgroup of $G = \mathbb{Z}$.
 - 1. $a, b \in H \Rightarrow a = 5n, b = 5m, n, m \in \mathbb{Z}$. $a + b = 5n + 5m = 5(n + m), n + m \in \mathbb{Z}$ So *H* is closed under +.
 - 2. $a \in H \Rightarrow a = 5n, n \in \mathbb{Z}$. $-a = 5(-n), -n \in \mathbb{Z}$ so $-a \in H$. Thus H contains all of its inverses.

Cyclic Subgroups

What's the smallest subgroup H of \mathbb{Z}_{12} , + that contains 3?

For H to be a subgroup of \mathbb{Z}_{12} it needs to contain 0, the identity element of \mathbb{Z}_{12} . It also needs to be closed under addition so,

 $3 + 3 = 6 \in H$ $3 + 6 = 9 \in H$ and $9 + 3 = 0 \in H$. Notice the inverse of 6 is 6 (i.e. $6 + 6 = 0 \mod 12$) and the inverse of 9 is 3 (i.e. $9 + 3 = 0 \mod 12$), So $\{0, 3, 6, 9\}$ is the smallest subgroup of \mathbb{Z}_{12} that contains 3.

In general, if a subgroup $H \leq G$ contains an element a then it must contain $\{a^n, n \in \mathbb{Z}\}$.

Theorem: Let G be a group and let $a \in G$. Then $H = \{a^n | n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a.

Proof:

1. Since $a^r \cdot a^s = a^{r+s}$ for $r, s \in \mathbb{Z}$, H is closed under multiplication.

2. If $a^r \in H$ then $a^{-r} \in H$ and $a^r \cdot a^{-r} = e$. So H contains inverses.

Hence H is a subgroup of G.

Notice that any subgroup of G that contains a must also contain all powers of a and thus must contain H. Thus H is the smallest subgroup of G containing a.

- Def. Let *G* be a group and $a \in G$. Then the subgroup $H = \{a^n | n \in \mathbb{Z}\}$ of *G* is called the **cyclic subgroup of** *G* **generated by** *a*, and denoted by < a >.
- Def. An element a of a group G generates G and is a generator for G if < a > = G. A group G is cyclic if there is some a in G that generates G.
- Ex. \mathbb{Z} is a cyclic group under + and 1 and -1 are both generators of \mathbb{Z} .

Ex. \mathbb{Z}_4 , + is cyclic and both 1 and 3 are generators, i.e. $< 1 > = < 3 > = \mathbb{Z}_4$.

If $a = 1$ then	If $a = 3$ then
$a^1 = 1$	$a^1 = 3$
$a^2 = 1 + 1 = 2$	$a^2 = (3+3) \pmod{4} = 2$
$a^3 = 1 + 1 + 1 = 3$	$a^3 = (3 + 3 + 3)(mod \ 4) = 1$
$a^4 = 1 + 1 + 1 + 1 = 4 \pmod{4} = 0$	$a^4 = (3 + 3 + 3 + 3) \pmod{4} = 0.$

Ex. V = Klein 4-group is not cyclic because

 $a^2 = e$, $b^2 = e$, $c^2 = e$ so $\langle a \rangle$, $\langle b \rangle$, $\langle c \rangle$ generate subgroups of V of order 2 and |V| = 4.

Ex. \mathbb{Z}_n is a cyclic group and 1 and n - 1 are generators. There could be other generators depending on what n is. For example, if n = 8, then 1,3,5, and 7 are generators (any number relatively prime to n, i.e. a number with no common factors with n will be a generator).

Ex. If a = 3, find < a > in \mathbb{Z} , +.

$$a^{1} = 3 \qquad a^{0} = 0$$

$$a^{2} = 3 + 3 = 6 \qquad a^{-1} = -3$$

$$a^{3} = 3 + 3 + 3 = 9 \qquad a^{-2} = -3 + (-3) = -6$$

$$\vdots \qquad \vdots$$

$$a^{n} = 3 + 3 + \dots + 3 = 3n \qquad a^{-n} = -3 + (-3) + \dots + (-3) = -3n.$$

So $< a > = < 3 > = 3\mathbb{Z} = \{n | n = 3m, m \in \mathbb{Z}\}.$

Ex. Find all elements in the cyclic subgroup H of $GL(2, \mathbb{R})$ (with matrix multiplication) generated by $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

$$\vdots$$

$$A^{n} = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.$$

If
$$A \in GL(2, \mathbb{R})$$
, $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
Then $A^{-1} = \frac{1}{detA} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$ so,
 $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
 $A^{-2} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$
:
 $A^{-n} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$
and $A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
So $H = \{A \in GL(2, \mathbb{R}) \mid A = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, $n \in \mathbb{Z}\}$.