## Groups

- Def. A group (G,\*) is a set G, and a binary operation \*, such that the following axioms hold:
  - 0) G is closed under \*
  - 1) For all  $a, b, c \in G$  we have (a \* b) \* c = a \* (b \* c) i.e. \* is associative
  - 2) There is an element e ∈ G such that for all x ∈ G, e \* x = x \* e = x.
    e is called the identity element.
  - 3) To each a ∈ G there exists an element a' ∈ G such that a \* a' = a' \* a = e.
    a' is called the inverse of a.

Def. A group G is **abelian** if its binary operation is commutative.

Ex. Show that  $(\mathbb{Z}, +)$  is a group (so are  $(\mathbb{Q}, +), (\mathbb{R}, +)$ , and  $(\mathbb{C}, +)$ ).

- 0)  $\mathbb{Z}$  is closed under + .
- 1) Addition in  $\mathbb{Z}$  is associative.
- 2)  $0 \in \mathbb{Z}$  is the identity element.
- 3) For any  $a \in \mathbb{Z}$ ,  $-a \in \mathbb{Z}$  is the inverse of a.

 $(\mathbb{Z}, +)$  is also an abelian group because + is commutative.

Ex. Show that  $(\mathbb{Z}^+, +)$  is not a group.

- 0)  $\mathbb{Z}^+$  is closed under +.
- 1) + is associative.
- 2) There is no identity element  $(0 \notin \mathbb{Z}^+)$ .
- 3) No element of  $\mathbb{Z}^+$  has an inverse  $(-a \notin \mathbb{Z}^+)$  in  $\mathbb{Z}^+$ .
- So  $(\mathbb{Z}^+, +)$  fails axioms 2 and 3.

Ex.  $\mathbb{Q}^+$ ,  $\mathbb{R}^+$ ,  $\mathbb{Q}^*$ ,  $\mathbb{R}^*$  and  $\mathbb{C}^*$  are all abelian groups under multiplication.

- 0) Each set is closed under multiplication.
- 1) Multiplication is associative (and commutative).
- 2) 1 is the identity element.
- 3) If *a* is in any of the above sets, so is  $\frac{1}{a}$ , the multiplicative inverse.
- Ex. Show the set F of all real valued functions on  $\mathbb{R}$  is an abelian group under addition.
  - 0) *F* is closed under addition.
  - 1) Addition of functions is associative (and commutative).
  - 2) f(x) = 0 is the identity element.
  - 3) If  $f(x) \in F$  then  $-f(x) \in F$  and -f(x) is the inverse of f(x).

Ex. Show the set  $M_{m \times n}(\mathbb{R})$  of all  $m \times n$  matrices with real entries is an abelian group under addition, but not under multiplication.

- 0)  $M_{m \times n}(\mathbb{R})$  is closed under addition.
- 1) Matrix addition is associative (and commutative).
- 2) The matrix with all entries equal to zero is the identity element.
- 3) If  $A \in M_{m \times n}(\mathbb{R})$  then  $-A \in M_{m \times n}(\mathbb{R})$  and -A + A = 0 is the identity element.

 $M_{m \times n}(\mathbb{R})$  is not a group under multiplication because, in general, you can't multiply an  $m \times n$  matrix by an  $m \times n$  matrix (you can multiply  $m \times n$  and  $n \times q$  matrices).  $M_n(\mathbb{R}) = \{nxn \text{ matrices with real entries}\}$  is not a group under multiplication because not every  $n \times n$  matrix has an inverse.

- Ex. The set of all invertible  $n \times n$  matrices,  $GL(n, \mathbb{R}) =$  the general linear group of degree n, is a (non-abelian) group under matrix multiplication.
  - 0) To show  $GL(n, \mathbb{R})$  is closed under multiplication, we must show that if  $A, B \in GL(n, \mathbb{R})$ , i.e. A and B are invertible then AB is invertible.  $A, B \in GL(n, \mathbb{R}) => A^{-1}, B^{-1}$  exist. Now notice that:  $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$   $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$ . So,  $B^{-1}A^{-1}$  is the inverse of AB thus  $AB \in GL(n, \mathbb{R})$ .
  - 1) Matrix multiplication is associative (but <u>not</u> commutative).
  - The matrix with 1s on the major diagonal and 0s elsewhere is the identity element.
  - 3) By the definition of  $GL(n, \mathbb{R})$ , if  $A \in GL(n, \mathbb{R})$  then so is  $A^{-1}$ .

Ex. Let \* be defined on  $\mathbb{Q}^+$  by  $a * b = \frac{ab}{3}$ Show ( $\mathbb{Q}^+$ ,\*) is an abelian group.

0) if 
$$a, b \in \mathbb{Q}^+$$
 then  $a * b = \frac{ab}{3} \in \mathbb{Q}^+$ , so  $\mathbb{Q}^+$  is closed under  $*$ .

1) 
$$(a * b) * c = \frac{ab}{3} * c = \frac{abc}{9}$$
  
 $a * (b * c) = a * \frac{bc}{3} = \frac{abc}{9}$   
So,  $(a * b) * c = a * (b * c)$  and \* is associative.  
 $a * b = \frac{ab}{3} = \frac{ba}{3} = b * a$  so \* is commutative.

2) If  $a \in \mathbb{Q}^+$  and a is the identity element then:

$$a * b = b$$
, for all  $b \in \mathbb{Q}^+$ .

Thus we have:

$$a * b = \frac{ab}{3} = b \implies a = 3 \in \mathbb{Q}^+$$
 is the identity element.  
Notice:  $3 * a = \frac{3a}{3} = a$  and  $a * 3 = \frac{a(3)}{3} = a$ 

3) If  $a \in \mathbb{Q}^+$  and a' is the inverse of a then:

$$a * a' = 3$$
 (the identity element).  
 $\frac{a(a')}{3} = 3 \implies a' = \frac{9}{a} \in \mathbb{Q}^+$ .  
 $a * \frac{9}{a} = \frac{a(9)}{3a} = 3$   
 $\frac{9}{a} * a = \frac{9a}{3a} = 3$   
So  $\frac{9}{a}$  is the inverse of  $a$ .

## **Elementary Properties of Groups**

Theorem (left and right cancellation laws): Let (G,\*) be a group.

- 1) If a \* b = a \* c then b = c.
- 2) If b \* a = c \* a then b = c.

Proof of 1: Suppose a \* b = a \* c.

Since G is a group, a has an inverse  $a' \in G$ .

$$a' * (a * b) = a' * (a * c)$$

By associativity we have:

$$(a'*a)*b = (a'*a)*c$$

Since, by definition a' \* a = e and a \* a' = e, we have:

$$e * b = e * c$$
, or  $b = c$ .

Theorem: If (G,\*) is a group and  $a, b \in G$  then the equations

a \* x = b and y \* a = b have unique solutions  $x, y \in G$ .

Proof: First we show there is at least one solution.

If we let 
$$x = a' * b$$
 (where  $a'$  is the inverse of  $a$ ),  
Then  $a * (a' * b) = (a * a') * b$  (by associativity)  
 $= e * b$  (since  $a'$  is the inverse of  $a$ )  
 $= b$ .

So x = a' \* b is a solution to a \* x = b.

We show this solution is unique by assuming there are two solutions and showing that they must be equal.

Let  $x_1, x_2$  be solutions so that:  $a * x_1 = b$  and  $a * x_2 = b$ . Thus,  $a * x_1 = a * x_2$ . But then  $x_1 = x_2$  by the previous theorem (the cancellation law).

Theorem: In a group G, the identity element, e, is unique. Similarly, each element  $a \in G$  has a unique inverse.

Proof: Assume  $e_1, e_2$  are both identity elements of G, so

$$e_1 * g = g$$
 and  $e_2 * g = g$  For all  $g \in G$ .

Thus we have:  $e_1 * g = e_2 * g$ .

By the right cancellation law  $e_1 = e_2$ .

So, the identity element is unique.

Assume *a* has two inverses,  $a', a'' \in G$ , then:

a \* a' = a' \* a = e and a \* a'' = a'' \* a = e.

So a \* a' = a \* a''

and a' = a'' by the left cancellation law.

So, *a* has a unique inverse.

Corollary: (a \* b)' = b' \* a'.

Proof: (a \* b) \* (b' \* a') = a \* (b \* b') \* a'= a \* e \* a'= a \* a'= e. Similarly, we get (b' \* a') \* (a \* b) = e.

How many different groups can there be with just two elements?

Let  $G = \{e, a\}$  with the following multiplication table:

Since *G* is a group a \* a = e or *a*.

But a must also have an inverse element, so a \* a = e, and there is only one group with two elements.



It's easy to check that \* is also associative by using this table.

If we let  $G = \{0,1\}$ , i.e. e = 0, a = 1, and \* be addition modulo 2, we can see that G is essentially  $\mathbb{Z}_2$  with modulo 2 addition.

Now, suppose G is a group with 3 elements,  $G = \{e, a, b\}$ 

| * | е | а | b |
|---|---|---|---|
| е | е | а | b |
| а | а |   |   |
| b | b |   |   |

To fill out the rest of the table we need: a \* a, b \* b, a \* b, and b \* a.

a \* b must equal e, otherwise either a or b would equal e.

(e.g. a \* b = a implies b = e), which it can't.

Similarly, b \* a = e. So a, b are inverses of each other.

Now a \* a = b since a \* a = a implies a = e, and a \* a = eimplies a is its own inverse, but we just saw b is the unique inverse of a. Similarly, b \* b = a.

So we have:

| * | е | а | b |
|---|---|---|---|
| е | е | а | b |
| а | а | b | е |
| b | b | е | а |

If we let  $G = \{0, 1, 2\}$  i.e. e = 0, a = 1, b = 2 and \* be addition

modulo 3, we see that the only group with 3 elements is essentially  $\mathbb{Z}_3.$