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                                                      Groups 

 

Def.  A group (𝐺,∗) is a set 𝐺, and a binary operation ∗, such that the following  

          axioms hold: 

0) 𝐺 is closed under  ∗  

 

1) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺 we have  
(𝑎 ∗  𝑏) ∗  𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)         i.e.  ∗  is associative  

 

2) There is an element 𝑒 ∈ 𝐺 such that  

for all 𝑥 ∈ 𝐺,   𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 = 𝑥. 

𝑒 is called the identity element. 

 
3) To each 𝑎 ∈ 𝐺 there exists an element 𝑎′ ∈ 𝐺 

such that   𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒. 

𝑎′ is called the inverse of 𝑎. 

 

Def. A group 𝐺 is abelian if its binary operation is commutative. 

 

Ex. Show that (ℤ, +) is a group (so are (ℚ, +), (ℝ, +), and (ℂ, +)). 

 

0) ℤ is closed under + . 

1) Addition in ℤ is associative. 

2) 0 ∈ ℤ is the identity element.  

3) For any 𝑎 ∈ ℤ, −𝑎 ∈ ℤ is the inverse of 𝑎.   

(ℤ, +) is also an abelian group because + is commutative. 
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Ex.  Show that (ℤ+, +) is not a group.   

 

0) ℤ+ is closed under +. 

1) + is associative.  

2) There is no identity element  (0 ∉ ℤ+).  

3) No element of ℤ+ has an inverse (−𝑎 ∉ ℤ+) in ℤ+. 

So (ℤ+, +) fails axioms 2 and 3. 

 

Ex.  ℚ+, ℝ+, ℚ∗, ℝ∗ and ℂ∗ are all abelian groups under multiplication.   

 

0) Each set is closed under multiplication. 

1) Multiplication is associative (and commutative).  

2) 1 is the identity element. 

3) If 𝑎 is in any of the above sets, so is  
1

𝑎
 , the multiplicative inverse.  

 

Ex.   Show the set 𝐹 of all real valued functions on ℝ is an abelian group under 

         addition.   

 

0) 𝐹 is closed under addition. 
1) Addition of functions is associative (and commutative). 

2) 𝑓(𝑥) = 0 is the identity element. 

3) If 𝑓(𝑥) ∈ 𝐹 then −𝑓(𝑥) ∈ 𝐹 and −𝑓(𝑥) is the inverse of 𝑓(𝑥). 
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Ex.   Show the set 𝑀𝑚×𝑛(ℝ) of all 𝑚 × 𝑛 matrices with real entries  is an 

abelian group under addition, but not under multiplication .   

 

0) 𝑀𝑚×𝑛(ℝ) is closed under addition. 
1) Matrix addition is associative (and commutative).  

2) The matrix with all entries equal to zero is the identity element. 

3) If 𝐴 ∈ 𝑀𝑚×𝑛(ℝ) then  −𝐴 ∈ 𝑀𝑚×𝑛(ℝ) and  −𝐴 + 𝐴 = 0 is the 

identity element . 

𝑀𝑚×𝑛(ℝ) is not a group under multiplication because, in general, you can’t 

multiply an 𝑚 × 𝑛 matrix by an 𝑚 × 𝑛 matrix (you can multiply 𝑚 × 𝑛 and 

𝑛 × 𝑞 matrices).  𝑀𝑛(ℝ) = {𝑛𝑥𝑛 matrices with real entries} is not a group 

under multiplication because not every 𝑛 × 𝑛 matrix has an inverse. 

 

Ex.   The set of all invertible 𝑛 × 𝑛 matrices, 𝑮𝑳(𝒏, ℝ) = the general linear  

          group of degree 𝒏, is a (non-abelian) group under matrix multiplication.   

 

0) To show 𝐺𝐿(𝑛, ℝ) is closed under multiplication, we must show that if 

𝐴, 𝐵 ∈ 𝐺𝐿(𝑛, ℝ), i.e. 𝐴 and 𝐵 are invertible then 𝐴𝐵 is invertible. 

𝐴, 𝐵 ∈ 𝐺𝐿(𝑛, ℝ) => 𝐴−1, 𝐵−1 exist.  Now notice that: 

     (𝐴𝐵)(𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1 = 𝐴𝐼𝐴−1 = 𝐴𝐴−1 = 𝐼                                   

     (𝐵−1𝐴−1)(𝐴𝐵) = 𝐵−1(𝐴−1𝐴)𝐵 = 𝐵−1𝐼𝐵 = 𝐵−1𝐵 = 𝐼. 

So, 𝐵−1𝐴−1 is the inverse of 𝐴𝐵 thus 𝐴𝐵 ∈ 𝐺𝐿(𝑛, ℝ). 

 
1) Matrix multiplication is associative (but not commutative). 

 

2) The matrix with 1s on the major diagonal and 0s elsewhere is the 

identity element. 

 

3) By the definition of 𝐺𝐿(𝑛, ℝ), if 𝐴 ∈ 𝐺𝐿(𝑛, ℝ) then so is 𝐴−1. 
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Ex.  Let ∗ be defined on ℚ+ by 𝑎 ∗ 𝑏 =
𝑎𝑏

3
   

Show (ℚ+,∗) is an abelian group.   

 

0)  if 𝑎, 𝑏 ∈ ℚ+ then 𝑎 ∗ 𝑏 =
𝑎𝑏

3
∈ ℚ+, so ℚ+ is closed under  ∗.  

 

1)  (𝑎 ∗ 𝑏) ∗ 𝑐 =
𝑎𝑏

3
∗ 𝑐 =

𝑎𝑏𝑐

9
   

 𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗
𝑏𝑐

3
=

𝑎𝑏𝑐

9
     

 So, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) and ∗ is associative.    

 

 

 𝑎 ∗ 𝑏 =
𝑎𝑏

3
=

𝑏𝑎

3
= 𝑏 ∗ 𝑎  so ∗ is commutative.    

 

2)  If 𝑎 ∈ ℚ+ and 𝑎 is the identity element then: 

              𝑎 ∗ 𝑏 = 𝑏, for all 𝑏 ∈ ℚ+. 

Thus we have:     

        𝑎 ∗ 𝑏 =
𝑎𝑏

3
= 𝑏    ⟹  𝑎 = 3 ∈ ℚ+ is the identity element. 

Notice:    3 ∗ 𝑎 =
3𝑎

3
= 𝑎  and   𝑎 ∗ 3 =

𝑎(3)

3
= 𝑎     

 

3) If 𝑎 ∈ ℚ+and 𝑎′ is the inverse of  𝑎 then: 

                     𝑎 ∗ 𝑎′ = 3  (the identity element). 

                       
𝑎(𝑎′)

3
= 3   ⟹  𝑎′ =

9

𝑎
 ∈ ℚ+ .          

𝑎 ∗
9

𝑎
=

𝑎(9)

3𝑎
= 3 
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𝑎
∗ 𝑎 =

9𝑎

3𝑎
= 3 

So 
9

𝑎
 is the inverse of 𝑎. 
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Elementary Properties of Groups 

Theorem (left and right cancellation laws): Let (𝐺,∗) be a group. 

1) If 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 then 𝑏 = 𝑐. 

2) If 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 then 𝑏 = 𝑐.   

 

Proof of 1:   Suppose 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐.  

Since 𝐺 is a group, 𝑎 has an inverse 𝑎′ ∈ 𝐺. 

𝑎′ ∗ (𝑎 ∗ 𝑏) = 𝑎′ ∗ (𝑎 ∗ 𝑐) 

By associativity we have: 

(𝑎′ ∗ 𝑎) ∗ 𝑏 = (𝑎′ ∗ 𝑎) ∗ 𝑐 

Since, by definition 𝑎′ ∗ 𝑎 = 𝑒 and 𝑎 ∗ 𝑎′ = 𝑒, we have: 

                    𝑒 ∗ 𝑏 = 𝑒 ∗ 𝑐,  or 𝑏 = 𝑐. 

 

Theorem: If (𝐺,∗) is a group and 𝑎, 𝑏 ∈ 𝐺 then the equations  

      𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏 have unique solutions 𝑥, 𝑦 ∈ 𝐺. 

 

Proof: First we show there is at least one solution. 

 If we let 𝑥 = 𝑎′ ∗ 𝑏                             (where 𝑎′ is the inverse of 𝑎), 

 Then 𝑎 ∗ (𝑎′ ∗ 𝑏) = (𝑎 ∗ 𝑎′) ∗ 𝑏     (by associativity) 

              = 𝑒 ∗ 𝑏                 (since 𝑎′ is the inverse of 𝑎) 

              = 𝑏.       

           So 𝑥 = 𝑎′ ∗ 𝑏 is a solution to  𝑎 ∗ 𝑥 = 𝑏. 
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We show this solution is unique by assuming there are two solutions and showing 

that they must be equal. 

Let 𝑥1, 𝑥2 be solutions so that:       𝑎 ∗ 𝑥1 = 𝑏 and 𝑎 ∗ 𝑥2 = 𝑏. 

Thus, 𝑎 ∗ 𝑥1 = 𝑎 ∗ 𝑥2. 

But then  𝑥1 = 𝑥2 by the previous theorem (the cancellation law). 

 

Theorem: In a group 𝐺, the identity element, 𝑒, is unique. Similarly, each 

element 𝑎 ∈ 𝐺 has a unique inverse. 

 

Proof: Assume 𝑒1, 𝑒2 are both identity elements of 𝐺, so 

                   𝑒1 ∗ 𝑔 = 𝑔   and   𝑒2 ∗ 𝑔 = 𝑔   For all 𝑔 ∈ 𝐺.  

 

            Thus we have:                   𝑒1 ∗ 𝑔 = 𝑒2 ∗ 𝑔.  

 

             By the right cancellation law 𝑒1 = 𝑒2. 

   So, the identity element is unique. 

 

Assume 𝑎 has two inverses, 𝑎′, 𝑎′′ ∈ 𝐺, then: 

             𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒     and     𝑎 ∗ 𝑎′′ = 𝑎′′ ∗ 𝑎 = 𝑒.  

 

       So   𝑎 ∗ 𝑎′ = 𝑎 ∗ 𝑎′′   

 

       and 𝑎′ = 𝑎′′ by the left cancellation law. 

       So, 𝑎 has a unique inverse. 
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Corollary: (𝑎 ∗ 𝑏)′ = 𝑏′ ∗ 𝑎′. 

 

Proof:       (𝑎 ∗ 𝑏) ∗ (𝑏′ ∗ 𝑎′) = 𝑎 ∗ (𝑏 ∗ 𝑏′) ∗ 𝑎′ 

      = 𝑎 ∗ 𝑒 ∗ 𝑎′ 

     = 𝑎 ∗ 𝑎′ 

     = 𝑒. 

                   Similarly, we get (𝑏′ ∗ 𝑎′) ∗ (𝑎 ∗ 𝑏) = 𝑒.  

 

How many different groups can there be with just two elements? 

 Let 𝐺 = {𝑒, 𝑎} with the following multiplication table:  

* e a 

e e a 

a a  

 

Since 𝐺 is a group 𝑎 ∗ 𝑎 = 𝑒 or 𝑎. 

But 𝑎 must also have an inverse element, so 𝑎 ∗ 𝑎 = 𝑒, and there is only one 

group with two elements. 

* e a 

e e a 

a a e 

 

It’s easy to check that ∗ is also associative by using this table.  
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If we let 𝐺 = {0,1}, i.e. 𝑒 = 0, 𝑎 = 1, and ∗ be addition modulo 2, we can see 

that 𝐺 is essentially ℤ2 with modulo 2 addition. 

Now, suppose 𝐺 is a group with 3 elements, 𝐺 = {𝑒, 𝑎, 𝑏} 

* e a b 

e e a b 

a a   

b b   

 

To fill out the rest of the table we need: 𝑎 ∗ 𝑎, 𝑏 ∗ 𝑏, 𝑎 ∗ 𝑏, and 𝑏 ∗ 𝑎.   

 

𝑎 ∗ 𝑏  must equal 𝑒, otherwise either 𝑎 or 𝑏 would equal 𝑒.  

(e.g. 𝑎 ∗ 𝑏 = 𝑎 implies 𝑏 = 𝑒), which it can’t.   

 

Similarly, 𝑏 ∗ 𝑎 = 𝑒. So 𝑎, 𝑏 are inverses of each other.  

 

Now 𝑎 ∗ 𝑎 = 𝑏 since 𝑎 ∗ 𝑎 = 𝑎 implies 𝑎 = 𝑒, and 𝑎 ∗ 𝑎 = 𝑒 

implies 𝑎 is its own inverse, but we just saw 𝑏 is the unique inverse of 𝑎. 

Similarly, 𝑏 ∗ 𝑏 = 𝑎.  

 

So we have: 

* e a b 

e e a b 

a a b e 

b b e a 

 

If we let 𝐺 = {0, 1, 2} i.e.  𝑒 = 0, 𝑎 = 1, 𝑏 = 2  and ∗ be addition 
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modulo 3, we see that the only group with 3 elements is essentially ℤ3. 


