In problems 1-7 determine if the operation * defines a group structure on the set. If not, identify which group axioms are violated.

1.
$$a * b = ab$$
 on \mathbb{Z}^+
2. $a * b = a + b$ on $3\mathbb{Z} = \{3n | n \in \mathbb{Z}\}$
3. $a * b = ab$ on \mathbb{R}
4. $a * b = ab$ on $\mathbb{Q}^* = \{x \in \mathbb{Q} | x \neq 0\}$
5. $A * B = AB$, matrix multiplication on
 $M = \{A \in M_n(\mathbb{R}) | A \text{ is diagonal}\}$
6. $A * B = A + B$, matrix addition on $M_n(\mathbb{R})$
7. $A * B = AB$, matrix multiplication on
 $M = \{A \in M_n(\mathbb{R}) | \det(A) = \pm 1\}$

Give a multiplication table for {0,1,2,3,4} with
 a * b = a + b (mod 5) where a + b (mod 5) is the remainder
 when a + b is divided by 5. Find the inverse of each element of {0,1,2,3,4}.

9. Suppose G is a group. Prove that G has exactly one element g such that g * g = g.

10. Suppose (a * b) * (a * b) = (a * a) * (b * b) for all $a, b \in G$, where G is a group. Prove that a * b = b * a (ie G is an abelian group).