Field Extensions

- Def. A field E is an **extension field** of a field F if F is a subfield of E ($F \le E$).
- Ex. \mathbb{R} is an extension field of \mathbb{Q} and \mathbb{C} is an extension field of \mathbb{R} and \mathbb{Q} .
- Kronecker's Theorem: Let F be a field and let g(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $g(\alpha) = 0$.
- Ex. Let $F=\mathbb{R}$ and let $g(x)=x^2+1$. g(x) has no zeros in \mathbb{R} and thus is irreducible over \mathbb{R} . $< x^2+1>$ is a maximal ideal in $\mathbb{R}[x]$ so $\mathbb{R}[x]/< x^2+1>$ is a field.

We can view \mathbb{R} as a subfield of $\mathbb{R}[x]/\langle x^2+1\rangle$ through the mapping:

$$\varphi: \mathbb{R} \to \mathbb{R}[x]/\langle x^2 + 1 \rangle$$
 by $\varphi(t) = t + \langle x^2 + 1 \rangle$, $t \in \mathbb{R}$.

Let
$$\alpha = x + \langle x^2 + 1 \rangle \in \mathbb{R}[x]/\langle x^2 + 1 \rangle$$
,
then $\alpha^2 + 1 = (x + \langle x^2 + 1 \rangle)^2 + (1 + \langle x^2 + 1 \rangle)$
 $= (x^2 + 1) + \langle x^2 + 1 \rangle$
 $= 0$.

Thus α is a zero of x^2+1 . So we can think of $\mathbb{R}[x]/< x^2+1>$ as an extension field of \mathbb{R} , which has an element α where $\alpha^2+1=0$.

Ex. Let $F = \mathbb{Q}$ and consider $f(x) = x^4 - 7x^2 + 10$.

In $\mathbb{Q}[x]$, $f(x) = (x^2 - 2)(x^2 - 5)$, where $x^2 - 2$ and $x^2 - 5$ are irreducible over \mathbb{Q} .

We can construct a field $\mathbb{Q}[x]/< x^2-2>$, which can be thought of as an extension field of \mathbb{Q} , which has an element α such that $\alpha^2-2=0$ (just let $\alpha=x+< x^2-2>$).

We can also construct an extension field of \mathbb{Q} , $\mathbb{Q}[x]/< x^2-5>$, which has an element α such that $\alpha^2-5=0$.

- Def. An element α of an extension field E of a field F is **algebraic** over F if $f(\alpha)=0$ for some f(x)=F[x]. If α is not algebraic over F, then α is **transcendental** over F.
- Ex. $\mathbb C$ is an extension field of $\mathbb Q$. Since $\sqrt{3}$ is a zero of x^2-3 , $\sqrt{3}$ is an algebraic element over $\mathbb Q$. Since i is a zero of x^2+1 , i is also algebraic over $\mathbb Q$.
- Ex. Although it's not that easy to prove, π and e are transcendental numbers over \mathbb{Q} .

Ex. Notice that π and e are transcendental over $\mathbb Q$ because there is no polynomial with coefficients in $\mathbb Q$ (or $\mathbb Z$) such that π or e is a solution to:

$$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0; \qquad a_i\in\mathbb{Q} \text{ for all } i=1,\ldots,n.$$

However, π and e are algebraic over $\mathbb R$ because π is a root of $x-\pi=0$ and e is a root of x-e=0.

So whether a number is algebraic or transcendental can depend on which field you are taking it over.

Ex. Show $\sqrt{1+\sqrt{7}}$ is algebraic over \mathbb{Q} .

Let
$$\alpha = \sqrt{1 + \sqrt{7}}$$
 then:

$$\alpha^2 = 1 + \sqrt{7}$$

$$\alpha^2 - 1 = \sqrt{7}$$

$$(\alpha^2 - 1)^2 = 7$$

$$\alpha^4 - 2\alpha^2 + 1 = 7$$
 or $\alpha^4 - 2\alpha^2 - 6 = 0$.

So α is a zero of $x^4 - 2x^2 - 6 = 0$ in $\mathbb{Q}[x]$ and α is algebraic over \mathbb{Q} .

Theorem: Let E be an extension field of F, and $\alpha \in E$, with α algebraic over F. Then there is an irreducible polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. f(x) is uniquely determined up to a constant factor in F and is a polynomial of minimal degree ≥ 1 in F[x] having α as a zero. If $g(\alpha) = 0$ for $g(x) \in F[x]$, with $g(x) \neq 0$, then f(x) divides g(x).

- Ex. $x^2-2=0$, $3x^2-6=0$, and $x^3-2x=0$ all have $\sqrt{2}$ as a zero. Notice that $3x^2-6=3(x^2-2)$ and $x^3-2x=x(x^2-2)$. x^2-2 and $3x^2-6$ are irreducible in $\mathbb{Q}[x]$ where x^3-2x is not.
- Def. Let E be an extension field of a field F, and let $\alpha \in E$ be algebraic over F. The unique **monic** polynomial (coefficient of the highest power is 1) p(x), where $p(\alpha) = 0$ and p(x) is irreducible over F, is the irreducible polynomial for α over F and will be denoted $irr(\alpha, F)$. The degree of $irr(\alpha, F)$ is the degree of α over F, denoted by $deg(\alpha, F)$.
- Ex. We saw that $\alpha=\sqrt{1+\sqrt{7}}$ is a zero of x^4-2x^2-6 in $\mathbb{Q}[x]$. x^4-2x^2-6 is irreducible over \mathbb{Q} by Eisenstein's criterion with p=2 since:

$$a_n = 1 \not\equiv 0 \; (mod \; 2), \qquad -2 \equiv 0 \; (mod \; 2)$$
 $-6 \equiv 0 \; (mod \; 2) \; \text{ and } \; -6 \not\equiv 0 \; (mod \; (2^2)).$

The leading coefficient is 1 so $irr\left(\sqrt{1+\sqrt{7}},\mathbb{Q}\right)=x^4-2x^2-6$, and $deg\left(\left(\sqrt{1+\sqrt{7}}\right),\mathbb{Q}\right)=4$.

Ex. When we talk about the degree of an algebraic number, we must specify which field we are talking about. For example, for $\alpha = \sqrt{3}$:

$$irr(\sqrt{3}, \mathbb{Q}) = x^2 - 3$$
 so $deg(\sqrt{3}, \mathbb{Q}) = 2$,
but $irr(\sqrt{3}, \mathbb{R}) = x - \sqrt{3}$ so $deg(\sqrt{3}, \mathbb{R}) = 1$.

Ex. Find $irr(\alpha, \mathbb{Q})$ and $deg(\alpha, \mathbb{Q})$ for $\alpha = \sqrt{3+i}$.

$$\alpha^{2} = 3 + i$$

$$\alpha^{2} - 3 = i$$

$$(\alpha^{2} - 3)^{2} = i^{2} = -1$$

$$\alpha^{4} - 6\alpha^{2} + 9 = -1$$

$$\alpha^{4} - 6\alpha^{2} + 10 = 0$$

So α satisfies $x^4 - 6x^2 + 10 = 0$.

$$x^4-6x^2+10=0$$
 is irreducible over $\mathbb Q$ by Eisenstein's criterion with $p=2$ since: $a_4=1\not\equiv 0\ (mod\ 2), \quad -6\equiv 0\ (mod\ 2),$ and $10\equiv 0\ (mod\ 2),$ But $10\not\equiv 0\ (mod\ 2^2).$ So: $irr(\alpha,\mathbb Q)=x^4-6x^2+10, \qquad deg(\alpha,\mathbb Q)=4.$

- Def. Suppose α is algebraic over F then $< irr(\alpha, F) >$ is a maximal ideal of F[x]. Therefore, $F[x]/< irr(\alpha, F) >$ is a field and is isomorphic to the image $\phi_{\alpha}[F[x]]$, where ϕ_{α} is the evaluation homomorphism. We call this field $F(\alpha)$.
- Def. An extension field E of a field F is a **simple extension** of F if $E = F(\alpha)$ for some $\alpha \in E$.

Theorem: Let E be a simple extension $F(\alpha)$ of a field F, and let α be algebraic over F. Let the degree of $irr(\alpha,F)$ be $n\geq 1$. Then every element γ of $E=F(\alpha)$ can be uniquely expressed in the form:

$$\gamma = c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1}$$
 where c_i are in F .

Ex. $f(x) = x^2 + x + 1$ in $\mathbb{Z}_2[x]$ is irreducible over \mathbb{Z}_2 because it is degree 2 and has no zero in \mathbb{Z}_2 since:

$$f(0) = 1 \text{ and } f(1) \equiv 1 \pmod{2}.$$

By Kronecker's Theorem there exists an extension field E on \mathbb{Z}_2 , which has a zero of x^2+x+1 . By our previous theorem, elements of $E=\mathbb{Z}_2(\alpha)$ are of the form:

$$a_1\alpha + a_0$$
 where $a_0, a_1 \in \mathbb{Z}_2$.

So the elements of $E = \mathbb{Z}_2(\alpha)$ are:

$$0+0\alpha=0$$
, $1+0\alpha=1$, $0+1\alpha=\alpha$, and $1+\alpha$.

Thus $E = \mathbb{Z}_2(\alpha)$ is a finite field with 4 elements.

How do we add or multiply these elements? We need to use the fact that $\alpha^2+\alpha+1=0$ to do this. In \mathbb{Z}_2 we have:

$$\alpha^2 = -\alpha - 1 = \alpha + 1.$$

So, for example, if we want to multiply:

$$(\alpha)(1 + \alpha) = \alpha + \alpha^2 = \alpha + \alpha + 1 = 1.$$

So let's fill in the addition and multiplication tables for $\mathbb{Z}_2(\alpha)$:

+	0	1	α	$1 + \alpha$	•	0	1	α	$1 + \alpha$
0	0	1	α	$1 + \alpha$	0	0	0	0	0
1	1	0	$1 + \alpha$	α	1	0	1	α	$1 + \alpha$
α	α	$1 + \alpha$	0	1	α	0	α	$1 + \alpha$	1
$1 + \alpha$	$1 + \alpha$	α	1	0	$1 + \alpha$	0	$1 + \alpha$	1	α

Finally, let's show that $\mathbb{R}[x]/< x^2+1>\cong \mathbb{C}$:

$$\mathbb{R}(\alpha)=\mathbb{R}[x]/< x^2+1>$$
 where elements of $\mathbb{R}(\alpha)$ are of the form: $a_0+a_1\alpha; \quad a_0,a_1\in\mathbb{R} \quad \text{where } \alpha^2=-1.$

We usually call α , $i = \sqrt{-1}$.

So we have:

$$\mathbb{R}(\alpha) = \mathbb{R}[x] / \langle x^2 + 1 \rangle = \{ a_0 + a_1 \alpha | a_0, a_1 \in \mathbb{R}, \ \alpha^2 = -1 \}$$
$$\cong \{ a + bi | a, b \in \mathbb{R}, \ i = \sqrt{-1} \} = \mathbb{C}.$$